The Essence of Three-Phase PFC Rectifier Systems-Part II

The second part of the essence of three-phase PFC Rectifier Systems is dedicated to a comparative evaluation of four active three-phase PFC rectifiers that are of interest for industrial application: the active six-switch boost-type PFC rectifier, the Vienna Rectifier (VR), the active six-switch buc...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power electronics Vol. 29; no. 2; pp. 543 - 560
Main Authors Friedli, Thomas, Hartmann, Michael, Kolar, Johann W.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.02.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The second part of the essence of three-phase PFC Rectifier Systems is dedicated to a comparative evaluation of four active three-phase PFC rectifiers that are of interest for industrial application: the active six-switch boost-type PFC rectifier, the Vienna Rectifier (VR), the active six-switch buck-type PFC rectifier, and the Swiss Rectifier. Typical dynamic feed-back control structures of the considered topologies are shown, and analytical equations for calculating the current stresses of the power semiconductors are provided. In addition, EMI filtering is discussed. The rectifier systems are assessed and compared based on simple and demonstrative performance indices such as the semiconductor stresses, the required semiconductor chip area, the volume of the main passive components, the DM and CM conducted EMI noise levels, and the efficiency. Two implementation variants, a more advanced one using SiC JFETs and SiC Schottky diodes and one using Si IGBTs and SiC Schottky diodes, are considered. The comparison is extended with selected examples of hardware demonstrators of VR systems that are optimized for efficiency and/or power density. This allows to determine the tradeoff between efficiency and power density and to quantify a typical efficiency versus power density limit (Pareto-Front) for practical three-phase PFC rectifier systems using standard printed circuit board interconnection technology.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2013.2258472