p73 and IGF1R Regulate Emergence of Aggressive Cancer Stem-like Features via miR-885-5p Control

Cancer stem-like cells (CSC) have been proposed to promote cancer progression by initiating tumor growth at distant sites, suggesting that stem-like cell features can support metastatic efficiency. Here, we demonstrate that oncogenic DNp73, a dominant-negative variant of the tumor-suppressor p73, co...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 76; no. 2; pp. 197 - 205
Main Authors Meier, Claudia, Hardtstock, Philip, Joost, Sophie, Alla, Vijay, Pützer, Brigitte M
Format Journal Article
LanguageEnglish
Published United States 15.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cancer stem-like cells (CSC) have been proposed to promote cancer progression by initiating tumor growth at distant sites, suggesting that stem-like cell features can support metastatic efficiency. Here, we demonstrate that oncogenic DNp73, a dominant-negative variant of the tumor-suppressor p73, confers cancer cells with enhanced stem-like properties. DNp73 overexpression in noninvasive melanoma and lung cancer cells increased anchorage-independent growth and elevated the expression of the pluripotency factors CD133, Nanog, and Oct4. Conversely, DNp73 depletion in metastatic cells downregulated stemness genes, attenuated sphere formation and reduced the tumor-initiating capability of spheroids in tumor xenograft models. Mechanistic investigations indicated that DNp73 acted by attenuating expression of miR-885-5p, a direct regulator of the IGF1 receptor (IGF1R) responsible for stemness marker expression. Modulating this pathway was sufficient to enhance chemosensitivity, overcoming DNp73-mediated drug resistance. Clinically, we established a correlation between low p73 function and high IGF1R/CD133/Nanog/Oct4 levels in melanoma specimens that associated with reduced patient survival. Our work shows how DNp73 promotes cancer stem-like features and provides a mechanistic rationale to target the DNp73-IGF1R cascade as a therapeutic strategy to eradicate CSC.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-15-1228