Nanovaccines with cell-derived components for cancer immunotherapy
[Display omitted] Cancer nanovaccines as one of immunotherapeutic approaches are able to attack tumors by stimulating tumor-specific immunological responses. However, there still exist multiple challenges to be tackled for cancer nanovaccines to evoke potent antitumor immunity. Particularly, the adm...
Saved in:
Published in | Advanced drug delivery reviews Vol. 182; p. 114107 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | [Display omitted]
Cancer nanovaccines as one of immunotherapeutic approaches are able to attack tumors by stimulating tumor-specific immunological responses. However, there still exist multiple challenges to be tackled for cancer nanovaccines to evoke potent antitumor immunity. Particularly, the administration of exogenous materials may cause the off-target immunotherapy responses. In recent years, biomimetic nanovaccines by using cell lysates, cell-derived nanovesicles, or extracted cell membranes as the functional components have received extensive attention. Such nanovaccines based on cell-derived components would show many unique advantages including inherent biocompatibility and the ability to trigger immune responses against a range of tumor-associated antigens. In this review article, we will introduce the recent research progresses of those cell-derived biomimetic nanovaccines for cancer immunotherapy, and discuss the perspectives and challenges associated with the future clinical translation of these emerging vaccine platforms. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 0169-409X 1872-8294 1872-8294 |
DOI: | 10.1016/j.addr.2021.114107 |