The influence of surface coatings on the toxicity of silver nanoparticle in rainbow trout
Silver nanoparticles (nAg) are often produced with different coatings that could influence bioavailability and toxicity in aquatic organisms. The purpose of this study was to examine the influence of 4 surface coatings of nAg of the same core size towards bioavailability and toxicity in juvenile rai...
Saved in:
Published in | Comparative biochemistry and physiology. Toxicology & pharmacology Vol. 226; p. 108623 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Silver nanoparticles (nAg) are often produced with different coatings that could influence bioavailability and toxicity in aquatic organisms. The purpose of this study was to examine the influence of 4 surface coatings of nAg of the same core size towards bioavailability and toxicity in juvenile rainbow trout (Oncorhynchus mykiss). Juveniles were exposed to 50 μg/L of 50 nm diameter nAg for 96 h at 15 °C with the following coatings: branched polyethylenimine (bPEI), citrate, polyvinylpyrrolidone (PVP) and silicate (Si). The data revealed that the coatings influenced hepatic Ag loadings in the following trend PVP > citrate > bPEI and Si with estimated bioavailability factors of 28, 18, 6 and 2 L/kg respectively. Hepatic Ag levels were significantly associated with DNA damage and inflammation as determined by arachidonate cyclooxygenase activity. The bPEI and citrate-coated nAg consistently produced the observed effects above in addition to increased mitochondrial electron transport activity and glutathione S-transferase activity. The absence of metallothionein and lipid peroxidation suggests that mechanisms other than the liberation of Ag+ were at play. In conclusion, surface coatings were shown to significantly influence bioavailability and toxic properties of nAg to rainbow trout juveniles.
[Display omitted]
•The coatings of silver nanoparticles influence availability and toxicity in fish.•Silver nanoparticles are available in the liver and produce inflammation and DNA damage.•Charged coatings produce stronger effects in fish liver. |
---|---|
ISSN: | 1532-0456 1878-1659 |
DOI: | 10.1016/j.cbpc.2019.108623 |