Manganese oxide-modified bismuth oxychloride piezoelectric nanoplatform with multiple enzyme-like activities for cancer sonodynamic therapy
[Display omitted] Sonodynamic therapy (SDT) is considered as a new-rising strategy for cancer therapeutics, but the inefficient production of reactive oxygen species (ROS) by current sonosensitizers seriously hinders its further applications. Herein, a piezoelectric nanoplatform is fabricated for en...
Saved in:
Published in | Journal of colloid and interface science Vol. 640; pp. 839 - 850 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | [Display omitted]
Sonodynamic therapy (SDT) is considered as a new-rising strategy for cancer therapeutics, but the inefficient production of reactive oxygen species (ROS) by current sonosensitizers seriously hinders its further applications. Herein, a piezoelectric nanoplatform is fabricated for enhancing SDT against cancer, in which manganese oxide (MnOx) with multiple enzyme-like activities is loaded on the surface of piezoelectric bismuth oxychloride nanosheets (BiOCl NSs) to form a heterojunction. When exposed to ultrasound (US) irradiation, piezotronic effect can remarkably promote the separation and transport of US-induced free charges, and further enhance ROS generation in SDT. Meanwhile, the nanoplatform shows multiple enzyme-like activities from MnOx, which can not only downregulate the intracellular glutathione (GSH) level, but also disintegrate endogenous hydrogen peroxide (H2O2) to generate oxygen (O2) and hydroxyl radicals (•OH). As a result, the anticancer nanoplatform substantially boosts ROS generation and reverses tumor hypoxia. Ultimately, it reveals remarkable biocompatibility and tumor suppression in a murine model of 4 T1 breast cancer under US irradiation. This work provides a feasible pathway for improving SDT using piezoelectric platforms. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2023.03.008 |