Biomarker responses in Danio rerio following an acute exposure (96 h) to e-waste leachate

Electronic waste (e-waste) has been identified as an emerging pollutant and is the fastest growing waste stream at the present time. Significant technological development and modernization within the last decade has led to the rapid accumulation of outdated, broken and unwanted electrical and electr...

Full description

Saved in:
Bibliographic Details
Published inEcotoxicology (London) Vol. 33; no. 8; pp. 859 - 874
Main Authors Rielly, A., Dahms-Verster, S., Greenfield, R.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Electronic waste (e-waste) has been identified as an emerging pollutant and is the fastest growing waste stream at the present time. Significant technological development and modernization within the last decade has led to the rapid accumulation of outdated, broken and unwanted electrical and electronic equipment (EEE). Electronic products mainly consist of a range of metal containing components that, when disposed of improperly, could result in metal constituents leached into the environment and posing a health risk to humans and animals alike. Metal exposure can induce oxidative stress in organisms, which could lead to synergistic, antagonistic and additive effects. The metals found highest in abundance in the simulated e-waste leachate, were nickel (Ni), barium (Ba), zinc (Zn), lithium (Li), iron (Fe), aluminium (Al) and copper (Cu). An acute exposure study was conducted over a 96 h period to determine the potential toxicity of e-waste on the test organism Danio rerio . Biomarker analysis results to assess the biochemical and physiological effects induced by e-waste leachate, showed a statistically significant effect induced on acetylcholinesterase activity, superoxide dismutase, catalase activity, reduced glutathione content, glutathione s-transferase, malondialdehyde and glucose energy available. The Integrated Biomarker Response (IBRv2) analysis revealed a greater biomarker response induced as the exposure concentration of e-waste leachate increased.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0963-9292
1573-3017
1573-3017
DOI:10.1007/s10646-024-02784-6