Constrained Temperature Control of a Solar Furnace

A new constrained control strategy for a solar furnace is proposed in this paper with the goal of attaining a minimum-time transition between two values of the temperature subject to constraints on both the saturation and slew rate level of the process input. In the case of set-point step-shape sign...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 20; no. 5; pp. 1263 - 1274
Main Authors Beschi, M., Visioli, A., Berenguel, M., Yebra, L. J.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A new constrained control strategy for a solar furnace is proposed in this paper with the goal of attaining a minimum-time transition between two values of the temperature subject to constraints on both the saturation and slew rate level of the process input. In the case of set-point step-shape signals, the strategy basically consists in implementing a (model-based) feedforward control law with maximum positive and negative velocity phases in order to obtain a minimum-time transition with no overshoot. In the case of ramp-shape set-point signals (addressing the output slew-rate constraint), the suitable feedforward control law is obtained by also inverting the dynamics of the system. Implementation issues are discussed. Simulation and real experimental results demonstrate the effectiveness of the methodology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1063-6536
1558-0865
DOI:10.1109/TCST.2011.2164795