Identification of bioactive compounds from mulberry enhancing glucose-stimulated insulin secretion

[Display omitted] Previously, we isolated six heterocyclic compounds (1–6) from the fruits of mulberry trees (Morus alba L.) and determined that loliolide affords rat pancreatic islet β-cell (INS-1) protection against streptozotocin‑induced cytotoxicity. In the present study, we further investigated...

Full description

Saved in:
Bibliographic Details
Published inBioorganic & medicinal chemistry letters Vol. 43; p. 128096
Main Authors Lee, Dahae, Kim, Ki Hyun, Jang, Tae Su, Kang, Ki Sung
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] Previously, we isolated six heterocyclic compounds (1–6) from the fruits of mulberry trees (Morus alba L.) and determined that loliolide affords rat pancreatic islet β-cell (INS-1) protection against streptozotocin‑induced cytotoxicity. In the present study, we further investigated the effect of the six heterocyclic compounds (1–6) on glucose-stimulated insulin secretion (GSIS) in INS-1 cells. Among them, (R)‑5‑hydroxypyrrolidin‑2‑one(1) and indole (6) increased GSIS without inducing cytotoxicity. Additionally, compounds 1 and 6 enhanced the phosphorylation of total insulin receptor substrate-2, phosphatidylinositol 3-kinase, and Akt, and activated pancreatic and duodenal homeobox-1, which play a crucial role in β-cell functions related to insulin secretion. Collectively, these findings indicate that (R)‑5‑hydroxypyrrolidin‑2‑one(1) and indole (6), isolated from M. alba fruits, may be beneficial in managing type 2 diabetes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0960-894X
1464-3405
DOI:10.1016/j.bmcl.2021.128096