Viscoelastic phenomena in methylcellulose aqueous systems: Application of fractional calculus
Fractional calculus models can potentially describe the viscoelastic phenomena in soft solids. Nevertheless, their successful application is limited. This paper explored the potential of using fractional calculus models to describe the viscoelastic properties of soft solids, focusing on methylcellul...
Saved in:
Published in | Food hydrocolloids Vol. 147; p. 109334 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fractional calculus models can potentially describe the viscoelastic phenomena in soft solids. Nevertheless, their successful application is limited. This paper explored the potential of using fractional calculus models to describe the viscoelastic properties of soft solids, focusing on methylcellulose aqueous systems. Methylcellulose is an important food additive, and it is known for its complex rheological behaviors, including thermogelation, which still puzzle rheologists. Through dynamic mechanical analysis and fractional rheology, we demonstrated that fractional calculus described the frequency- and temperature-dependent rheology of methylcellulose. This paper also showcased how including one springpot could potentially replace numerous spring-dashpot arrangements. Our findings using fractional calculus suggested that the thermogelation of methylcellulose involves the cooperative mobility of polymer chains and can be described as a process analogous to the glass transition in polymers. This study highlighted the power of combining fractional calculus and rheology to understand complex viscoelastic phenomena in soft solids.
[Display omitted] |
---|---|
ISSN: | 0268-005X 1873-7137 |
DOI: | 10.1016/j.foodhyd.2023.109334 |