A 2.5-GHz Built-in Jitter Measurement System in a Serial-Link Transceiver

A 2.5-GHz built-in jitter measurement (BIJM) system is adopted to measure the clock jitter on a transmitter and receiver. The proposed Vernier caliper and autofocus approaches reduce the area cost of delay cells by 48.78% relative to pure Vernier delay line structure with a wide measurement range. T...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on very large scale integration (VLSI) systems Vol. 17; no. 12; pp. 1698 - 1708
Main Authors JIANG, Shu-Yu, CHENG, Kuo-Hsing, JIAN, Pei-Yi
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.2009
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A 2.5-GHz built-in jitter measurement (BIJM) system is adopted to measure the clock jitter on a transmitter and receiver. The proposed Vernier caliper and autofocus approaches reduce the area cost of delay cells by 48.78% relative to pure Vernier delay line structure with a wide measurement range. The counter circuit occupies an area of 19 mum times 61 mum in the traditional stepping scan approach. The proposed equivalent-signal sampling technique removes the input jitter transfer path from the sampling clock. The power supply rejection design is incorporated into the delay cell and the judge circuit. The layout implementation, calibration, and test time of the proposed BIJM system are all improved. The core circuit occupies an area of only 0.5 mm times 0.15 mm with the 90-nm CMOS process. The Gaussian and uniform distributions jitter is verified at a 5-ps timing resolution and a 2.5-GHz input clock frequency .
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2008.2006476