Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-$(L_r,L_r,1)$ Terms, and a New Generalization

The canonical polyadic and rank-$(L_r,L_r,1)$ block term decomposition (CPD and BTD, respectively) are two closely related tensor decompositions. The CPD and, recently, BTD are important tools in psychometrics, chemometrics, neuroscience, and signal processing. We present a decomposition that genera...

Full description

Saved in:
Bibliographic Details
Published inSIAM journal on optimization Vol. 23; no. 2; pp. 695 - 720
Main Authors Sorber, Laurent, Van Barel, Marc, De Lathauwer, Lieven
Format Journal Article
LanguageEnglish
Published Philadelphia Society for Industrial and Applied Mathematics 01.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The canonical polyadic and rank-$(L_r,L_r,1)$ block term decomposition (CPD and BTD, respectively) are two closely related tensor decompositions. The CPD and, recently, BTD are important tools in psychometrics, chemometrics, neuroscience, and signal processing. We present a decomposition that generalizes these two and develop algorithms for its computation. Among these algorithms are alternating least squares schemes, several general unconstrained optimization techniques, and matrix-free nonlinear least squares methods. In the latter we exploit the structure of the Jacobian's Gramian to reduce computational and memory cost. Combined with an effective preconditioner, numerical experiments confirm that these methods are among the most efficient and robust currently available for computing the CPD, rank-$(L_r,L_r,1)$ BTD, and their generalized decomposition. [PUBLICATION ABSTRACT]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1052-6234
1095-7189
DOI:10.1137/120868323