Self-enhanced electrochemical properties of Ni–P nanosphere with heterogeneous Ni and Ni–P nanoflake outer layer anchored on carbon cloth for asymmetric all-solid-state supercapacitors

To meet the demand for high-power-density and long lifespan surpercapacitors (SCs), the Ni–P@Ni HL/CC-1h with a core–shell structure (Ni–P sphere as the core and nanoflake with the Ni and Ni–P heterogeneous layer as shell) was constructed via a facile strategy. The strategy included hydrothermal syn...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science. Materials in electronics Vol. 30; no. 19; pp. 18088 - 18100
Main Authors Ling, Jingzhou, Zou, Hanbo, Yang, Wei, Lei, Kangzhou, Chen, Shengzhou
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To meet the demand for high-power-density and long lifespan surpercapacitors (SCs), the Ni–P@Ni HL/CC-1h with a core–shell structure (Ni–P sphere as the core and nanoflake with the Ni and Ni–P heterogeneous layer as shell) was constructed via a facile strategy. The strategy included hydrothermal synthesis of Ni–P spheres with large Ni surface layer on carbon cloth (Ni–P@Ni HL/CC) and subsequent chemical dealloying using HCl as etching solution in order to remove the redundant Ni substances. The morphology, composition, and electrochemical performances of raw Ni–P@Ni HL/CC and the corresponding samples obtained by different dealloying times (0.5, 1, and 2 h) were characterized. Interestingly, the Ni–P@Ni HL/CC-1h presents a unique structure with a nanoflake shell and a porous core, which can provide a large number of exposed active sites, accelerate electrolyte ion diffusion and support ultra-long cycling. Furthermore, the Ni species existing in the outer flake can increase the conductivity and promote the capacitance during the charge–discharge processes. The Ni–P@Ni HL/CC-1h exhibited high specific capacity of 280.8 C g −1 at current density of 1 mA cm −2 , high rate retention of 76.2% at 20 mA cm −2 . The maximum specific capacity could reach 388.8 C g −1 at 8 mA cm −2 , and maintained the 92.6% retention after 3000 cycles. Moreover, the Ni–P@Ni HL/CC-1h//AC all-solid-state asymmetric supercapacitor (ASC) exhibited high specific capacity, 86.0% retention after 10,000 cycles and high energy density of 27.6 Wh kg −1 at power density of 942.8 W kg −1 .
ISSN:0957-4522
1573-482X
DOI:10.1007/s10854-019-02162-7