Triaxial Wetting Test on Rockfill Materials under Stress Combination Conditions of Spherical Stress p and Deviatoric Stress q
A GCTS medium-sized triaxial apparatus is used to conduct a single-line method wetting test on three kinds of rockfill materials of different mother rocks such as mixture of sandstone and slate, and dolomite and granite, and the test stress conditions is the combination of spherical stress p and dev...
Saved in:
Published in | Advances in materials science and engineering Vol. 2018; no. 2018; pp. 1 - 10 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2018
Hindawi Hindawi Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A GCTS medium-sized triaxial apparatus is used to conduct a single-line method wetting test on three kinds of rockfill materials of different mother rocks such as mixture of sandstone and slate, and dolomite and granite, and the test stress conditions is the combination of spherical stress p and deviatoric stress q. The test results show that (1) for wetting shear strain, the effects of spherical stress p and deviatoric stress q are equivalent, and wetting shear strain and deviatoric stress q show the power function relationship preferably. (2) For wetting volumetric strain, the effect of deviatoric stress q can be neglected because it is extremely insignificant, and spherical stress p is the main influencing factor and shows the power function relationship preferably. (3) The wetting strains decrease significantly with the increase in initial water content and sample density generally, but the excessively high dry density will increase the wetting deformation. Also, the wetting strains will decrease with the increase in the saturated uniaxial compressive strength and average softening coefficient of the mother rock. Based on the test results, a wetting strain model is proposed for rockfill materials. The verification results indicate that the model satisfactorily reflects the development law of wetting deformation. |
---|---|
ISSN: | 1687-8434 1687-8442 |
DOI: | 10.1155/2018/9853148 |