Optimization of Enzymatic Pretreatments to Obtain Fermentable Sugars from Fruit and Vegetable Waste

Biofuels production from organic waste requires an efficient hydrolysis to produce fermentable sugars. Physicochemical and biological pretreatment corresponds to good alternative to improve biofuel yield. Nonetheless, physical treatments can result in a negative energy balance and chemical treatment...

Full description

Saved in:
Bibliographic Details
Published inWaste and biomass valorization Vol. 11; no. 11; pp. 5991 - 6002
Main Authors Cabas Candama, Michael A., Duque Martinez, Sara, Cadena Chamorro, Edith M.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.11.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Biofuels production from organic waste requires an efficient hydrolysis to produce fermentable sugars. Physicochemical and biological pretreatment corresponds to good alternative to improve biofuel yield. Nonetheless, physical treatments can result in a negative energy balance and chemical treatments can generate inhibitors for a fermentative process, as well as difficulties in the recycling of organic matter. Thus, enzymatic pretreatments lead to fast and ecofriendly processes for conversion of waste biomass into monomeric units. In this work, fruit and vegetable wastes were hydrolyzed applying three types of enzymatic complexes: Viscozyme® L and a mixture of Multifect® B and Naturalzyme 40 XLTM. Production of reducing sugars as a temperature function and enzyme concentration was optimized by response surface analysis. Enzymatic complexes revealed high hydrolysis yield. Viscozyme® L application is highlighted; obtaining a hydrolysis higher than with the mixture of Multifect® B and Naturalzyme 40 XLTM (80% and 60% respectively) and being a promising treatment for the development of an efficient saccharification process of fruit and vegetable wastes. The optimum application conditions for Viscozyme® L were of 0.24 ppm and 40 °C and were validated with an error rate of 5%. For the mixture of Multifect® B and Naturalzyme 40 XLTM with Pectinase/Polygalacturonase activity, an optimum 0.93 ppm and 41 °C was found; these were validated with an error of 6%. Therefore, cellulases, xylanases and hemicellulases (Viscozyme® L) assured the hydrolysis of food wastes obtaining better available sugars for successive fermentative processes. Graphic Abstract
ISSN:1877-2641
1877-265X
DOI:10.1007/s12649-019-00821-8