Barium titanate nanostructures for photocatalytic hydrogen generation and photodegradation of chemical pollutants
Barium titanate nanoparticles (NPs) were synthesised using a modified sol–gel technique. The structure and morphology of NPs were described using various techniques. The photocatalytic activities of the NPs were evaluated by the photocatalytic degradation of Eriochrome black T and potassium dichroma...
Saved in:
Published in | Journal of materials science. Materials in electronics Vol. 30; no. 23; pp. 20646 - 20653 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Barium titanate nanoparticles (NPs) were synthesised using a modified sol–gel technique. The structure and morphology of NPs were described using various techniques. The photocatalytic activities of the NPs were evaluated by the photocatalytic degradation of Eriochrome black T and potassium dichromate in the presence of UV light irradiation. The barium titanate NP catalyst exhibited higher photocatalytic activity for the degradation of pollutants effectively at room temperature. The different parameters effects such as pollutant initial concentration, loading of photocatalyst, initial pH values of the solution were also examined on the decolourization efficiency of the pollutants. The highest degradation efficiency was achieved for Eriochrome dark T (93%) and potassium dichromate (92%) pollutants. The prepared NPs showed 26 μmol g
−1
hydrogen generation within 5 h. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0957-4522 1573-482X |
DOI: | 10.1007/s10854-019-02430-6 |