Antiproliferative Activity of Piceamycin by Regulating Alpha-Actinin-4 in Gemcitabine-Resistant Pancreatic Cancer Cells
Although gemcitabine-based regimens are widely used as an effective treatment for pancreatic cancer, acquired resistance to gemcitabine has become an increasingly common problem. Therefore, a novel therapeutic strategy to treat gemcitabine-resistant pancreatic cancer is urgently required. Piceamycin...
Saved in:
Published in | Biomolecules & therapeutics Vol. 32; no. 1; pp. 123 - 135 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Korea (South)
The Korean Society of Applied Pharmacology
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Although gemcitabine-based regimens are widely used as an effective treatment for pancreatic cancer, acquired resistance to gemcitabine has become an increasingly common problem. Therefore, a novel therapeutic strategy to treat gemcitabine-resistant pancreatic cancer is urgently required. Piceamycin has been reported to exhibit antiproliferative activity against various cancer cells; however, its underlying molecular mechanism for anticancer activity in pancreatic cancer cells remains unexplored. Therefore, the present study evaluated the antiproliferation activity of piceamycin in a gemcitabine-resistant pancreatic cancer cell line and patient-derived pancreatic cancer organoids. Piceamycin effectively inhibited the proliferation and suppressed the expression of
, a gene that plays a pivotal role in tumorigenesis and metastasis of various cancers, in gemcitabine-resistant cells. Long-term exposure to piceamycin induced cell cycle arrest at the G
/G
phase and caused apoptosis. Piceamycin also inhibited the invasion and migration of gemcitabine-resistant cells by modulating focal adhesion and epithelial-mesenchymal transition biomarkers. Moreover, the combination of piceamycin and gemcitabine exhibited a synergistic antiproliferative activity in gemcitabine-resistant cells. Piceamycin also effectively inhibited patient-derived pancreatic cancer organoid growth and induced apoptosis in the organoids. Taken together, these findings demonstrate that piceamycin may be an effective agent for overcoming gemcitabine resistance in pancreatic cancer. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1976-9148 2005-4483 |
DOI: | 10.4062/biomolther.2023.109 |