Sparsity Constrained Nonlinear Optimization: Optimality Conditions and Algorithms
This paper treats the problem of minimizing a general continuously differentiable function subject to sparsity constraints. We present and analyze several different optimality criteria which are based on the notions of stationarity and coordinatewise optimality. These conditions are then used to der...
Saved in:
Published in | SIAM journal on optimization Vol. 23; no. 3; pp. 1480 - 1509 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper treats the problem of minimizing a general continuously differentiable function subject to sparsity constraints. We present and analyze several different optimality criteria which are based on the notions of stationarity and coordinatewise optimality. These conditions are then used to derive three numerical algorithms aimed at finding points satisfying the resulting optimality criteria: the iterative hard thresholding method and the greedy and partial sparse-simplex methods. The first algorithm is essentially a gradient projection method, while the remaining two algorithms are of a coordinate descent type. The theoretical convergence of these techniques and their relations to the derived optimality conditions are studied. The algorithms and results are illustrated by several numerical examples. [PUBLICATION ABSTRACT] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1052-6234 1095-7189 |
DOI: | 10.1137/120869778 |