Targeted-gene silencing of BRAF to interrupt BRAF/MEK/ERK pathway synergized photothermal therapeutics for melanoma using a novel FA-GNR-siBRAF nanosystem

Melanoma is significantly associated with mutant BRAF gene, a suitable target for siRNA-based anti-melanoma therapy. However, a tumor-specific delivery system is a major hurdle for clinical applications. Here, we developed a novel nano-carrier, FA-GNR-siBRAF for safe topical application, which consi...

Full description

Saved in:
Bibliographic Details
Published inNanomedicine Vol. 14; no. 5; pp. 1679 - 1693
Main Authors Zhang, Yujuan, Zhan, Xuelin, Peng, Shanshan, Cai, Ying, Zhang, Yu Shrike, Liu, Yanling, Wang, Zhigang, Yu, Yanrong, Wang, Yifan, Shi, Qiaofa, Zeng, Xiaoping, Yuan, Keng, Zhou, Nanjin, Joshi, Rakesh, Zhang, Meng, Zhang, Zhuxu, Min, Weiping
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Melanoma is significantly associated with mutant BRAF gene, a suitable target for siRNA-based anti-melanoma therapy. However, a tumor-specific delivery system is a major hurdle for clinical applications. Here, we developed a novel nano-carrier, FA-GNR-siBRAF for safe topical application, which consists of folic acid (FA) as the tumor-targeting moiety, golden nanorods (GNR) providing photothermal capability to kill tumor cells under laser irradiation, and siRNA specifically silencing BRAF (siBRAF). The in vitro and in vivo results revealed that FA-GNR-siBRAF displayed high transfection rates, and subsequently induced remarkable gene knockdown of BRAF, resulting in suppression of melanoma growth due to the interruption of the MEK/ERK pathway. Combinatorial photothermal effects and BRAF knockdown by FA-GNR-siBRAF effectively killed tumor cells through apoptosis, with enhanced efficiency than individual treatments. Therefore, the FA-GNR-siBRAF simultaneously induced BRAF gene silencing and photothermal effects which achieved synergistic efficacy in the treatment of melanoma, paving a new path for developing clinical treatment methods for melanoma. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1549-9634
1549-9642
DOI:10.1016/j.nano.2018.04.010