An Efficient Partial Power Processing DC/DC Converter for Distributed PV Architectures

In this paper, a dc/dc power converter for distributed photovoltaic (PV) plant architectures is presented. The proposed converter has the advantages of simplicity, high efficiency, and low cost. High efficiency is achieved by having a portion of the input PV power directly fed forward to the output...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power electronics Vol. 29; no. 2; pp. 674 - 686
Main Authors Agamy, Mohammed S., Harfman-Todorovic, Maja, Elasser, Ahmed, Song Chi, Steigerwald, Robert L., Sabate, Juan A., McCann, Adam J., Li Zhang, Mueller, Frank J.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.02.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, a dc/dc power converter for distributed photovoltaic (PV) plant architectures is presented. The proposed converter has the advantages of simplicity, high efficiency, and low cost. High efficiency is achieved by having a portion of the input PV power directly fed forward to the output without being processed by the converter. The operation of this converter allows for a simplified maximum power point tracker design using fewer measurements. The stability analysis of the distributed PV system comprised of the proposed dc/dc converters confirms the stable operation even with a large number of deployed converters. The experimental results show a composite weighted efficiency of 98.22% with very high maximum power point tracking efficiency.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2013.2255315