Multifunctional and Water‐Resistant MXene‐Decorated Polyester Textiles with Outstanding Electromagnetic Interference Shielding and Joule Heating Performances

Although multifunctional, flexible, and wearable textiles with integrated smart electronics have attracted tremendous attention in recent years, it is still an issue to balance new functionalities with the inherent performances of the textile substrates. 2D early transition metal carbides/nitrides (...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 29; no. 7
Main Authors Wang, Qi‐Wei, Zhang, Hao‐Bin, Liu, Ji, Zhao, Sai, Xie, Xi, Liu, Liuxin, Yang, Rui, Koratkar, Nikhil, Yu, Zhong‐Zhen
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 14.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Although multifunctional, flexible, and wearable textiles with integrated smart electronics have attracted tremendous attention in recent years, it is still an issue to balance new functionalities with the inherent performances of the textile substrates. 2D early transition metal carbides/nitrides (MXenes) are considered as ideal nanosheets for fabricating multifunctional and flexible textiles on the basis of their superb intrinsic electrical conductivity, tunable surface chemistry, and layered structure. Herein, highly conductive and hydrophobic textiles with exceptional electromagnetic interference (EMI) shielding efficiency and excellent Joule heating performance are fabricated by depositing in situ polymerized polypyrrole (PPy) modified MXene sheets onto poly(ethylene terephthalate) textiles followed by a silicone coating. The resultant multifunctional textile exhibits high electrical conductivity of ≈1000 S m−1 in conjunction with an exceptional EMI shielding efficiency of ≈90 dB at a thickness of 1.3 mm. The thin silicone coating renders the hydrophilic PPy/MXene‐decorated textile hydrophobic, leading to an excellent water‐resistant feature while retaining a satisfactory air permeability of the textile. Interestingly, the multifunctional textile also exhibits an excellent moderate voltage‐driven Joule heating performance. Thus, the deposition of PPy‐modified MXene followed by silicone coating creates a multifunctional textile that holds great promise for wearable intelligent garments, EMI shielding, and personal heating applications. An efficient and scalable dip‐coating approach for the fabrication of flexible multifunctional transition metal carbides/nitrides (MXenes)‐derived textiles by decorating polypyrrole‐modified MXene sheets onto polyethylene terephthalate textiles followed by silicone coating is reported. The highly conductive and hydrophobic textiles show exceptional electromagnetic interference shielding efficiency, outstanding water‐resistant feature, and excellent Joule heating performances.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201806819