Contractility and Myofibrillar Content in Skeletal Muscle are Decreased During Post-Sepsis Recovery, But Not During the Acute Phase of Sepsis
Convalescence in humans after severe sepsis occurs over weeks to months and is associated with prolonged functional disabilities and impaired quality-adjusted survival. While much is known regarding the acute early phase of sepsis, there is a knowledge gap pertaining to restoration of muscle mass an...
Saved in:
Published in | Shock (Augusta, Ga.) Vol. 55; no. 5; p. 649 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
01.05.2021
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | Convalescence in humans after severe sepsis occurs over weeks to months and is associated with prolonged functional disabilities and impaired quality-adjusted survival. While much is known regarding the acute early phase of sepsis, there is a knowledge gap pertaining to restoration of muscle mass and function after elimination of the septic nidus. We used a sepsis-recovery model-where cecal-ligation-puncture (CLP) was performed in adult male mice followed 24 h later by removal of the cecum and antibiotic treatment-to assess changes in the abundance of muscle contractile proteins and function during the acute phase of sepsis (24 h post-CLP) and during the recovery phase (day 10 post-CLP). Although body weight and food consumption decreased acutely with sepsis, both had normalized by day 10; however, extensor digitorum longus mass remained decreased 10%. During acute sepsis, there were few contractile defects or significant changes in contractile proteins. In contrast, during sepsis recovery, specific maximum isometric twitch and specific maximum tetanic force were decreased ≈50%, compared with time-matched pair-fed controls, and defects were independent of the concomitant reduction in muscle mass. Force generation in sepsis-recovery mice was decreased 30% with increasing stimulus frequency. Contractile defects during sepsis-recovery were associated with 50% to 90% reductions in thin filament (troponin T, troponin I, tropomyosin, α-sarcomeric actin), thick filament (myosin heavy and myosin light chains), Z-disc (α-actinin 3), and M-band (myomesin-2) proteins, but no change in the intermediate filaments desmin and vimentin. During sepsis recovery, myofibrillar protein synthesis did not differ from control, but synthesis of sarcoplasmic proteins was increased 60%. These data suggest intrinsic defects in muscle contractile function exist during the recovery phase of sepsis and may negatively impact convalescence. |
---|---|
ISSN: | 1540-0514 |
DOI: | 10.1097/SHK.0000000000001555 |