A pilot study to investigate the utility of NAT2 genotype-guided isoniazid monotherapy regimens in NAT2 slow acetylators
Isoniazid is a therapeutic agent for the treatment of latent tuberculosis infection. Genetic variants in the N-acetyltransferase 2 (NAT2) are associated with the safety and pharmacokinetics of isoniazid. The study aimed to evaluate the safety and pharmacokinetics of a NAT2 genotype-guided regimen of...
Saved in:
Published in | Pharmacogenetics and genomics Vol. 31; no. 3; p. 68 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.04.2021
|
Online Access | Get more information |
Cover
Loading…
Summary: | Isoniazid is a therapeutic agent for the treatment of latent tuberculosis infection. Genetic variants in the N-acetyltransferase 2 (NAT2) are associated with the safety and pharmacokinetics of isoniazid. The study aimed to evaluate the safety and pharmacokinetics of a NAT2 genotype-guided regimen of isoniazid monotherapy. A randomized, open-label, parallel-group and multiple-dosing study was performed in healthy subjects. The subjects received isoniazid for 29 days. The NAT2 slow acetylators (NAT2*5/*5, -*5/*6, -*5/*7, -*6/*6, -*6/*7, -*7/*7) randomly received standard dose (300 mg, standard-treatment group) or reduced dose (200 mg, PGx-treatment group) of isoniazid. Also, all the NAT2 rapid acetylators (NAT2*4/*4) received isoniazid 300 mg (reference group). The safety and pharmacokinetics were evaluated during the study. The PGx-treatment group showed a more stable serum liver enzyme profile and a lower incidence of adverse drug reactions (ADRs) than the standard-treatment group. The emergence rates of ADRs were 12.5, 60 and 33.3% in the reference, standard-treatment and PGx-treatment groups, respectively. The PGx-treatment group showed higher plasma isoniazid concentrations than the reference group, although the PGx-treatment group received a reduced dose of isoniazid. Our results showed that a NAT2 genotype-guided regimen may reduce ADRs during isoniazid monotherapy without concern over insufficient drug exposure. |
---|---|
ISSN: | 1744-6880 |
DOI: | 10.1097/FPC.0000000000000423 |