High‐Efficiency and Reliable Smart Photovoltaic Windows Enabled by Multiresponsive Liquid Crystal Composite Films and Semi‐Transparent Perovskite Solar Cells

Smart photovoltaic windows (SPWs) are functional devices possessing the capabilities of electrical power output, energy saving, and privacy protection by managing sunlight under external stimuli and potentially applicable in the fields of energy‐saving buildings, automobiles, and switchable optoelec...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 9; no. 33
Main Authors Xia, Yu, Liang, Xiao, Jiang, Yun, Wang, Shaofu, Qi, Yuyang, Liu, Yumin, Yu, Li, Yang, Huai, Zhao, Xing‐Zhong
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.09.2019
Subjects
Online AccessGet full text
ISSN1614-6832
1614-6840
DOI10.1002/aenm.201900720

Cover

Loading…
Abstract Smart photovoltaic windows (SPWs) are functional devices possessing the capabilities of electrical power output, energy saving, and privacy protection by managing sunlight under external stimuli and potentially applicable in the fields of energy‐saving buildings, automobiles, and switchable optoelectronics. However, long response time, low power conversion efficiency (PCE), poor stability and cycling performance, and monostimuli responsive behavior restrict their practical applications. To address these issues, high‐efficiency and reliable SPWs are demonstrated by coupling multiresponsive liquid crystal/polymer composite (LCPC) films and semi‐transparent perovskite solar cells (ST‐PSCs). In this design, fast and multiple stimuli‐responsive LCPC films are utilized as an inside layer to control the transparency of SPWs. The ST‐PSCs with competitive PCE and qualified transparency acting as an outside layer offer energy generation functionality. Benefiting from repeatable transparency transition modulated by external stimuli, a series of working modes are achieved in the SPWs providing distinguished and stable energy generation, energy saving, and privacy protection performances. Smart photovoltaic windows with distinguished electrical power generation, energy saving, and privacy protection are enabled by coupling of multiresponsive liquid crystal/polymer composite (LCPC) films and semi‐transparent perovskite solar cells (ST‐PSC). In this design, fast and stable multiresponsive LCPC films are utilized as an inside layer to control the transparency, and high‐performance ST‐PSCs as an outside layer to offer energy generation functionality.
AbstractList Smart photovoltaic windows (SPWs) are functional devices possessing the capabilities of electrical power output, energy saving, and privacy protection by managing sunlight under external stimuli and potentially applicable in the fields of energy‐saving buildings, automobiles, and switchable optoelectronics. However, long response time, low power conversion efficiency (PCE), poor stability and cycling performance, and monostimuli responsive behavior restrict their practical applications. To address these issues, high‐efficiency and reliable SPWs are demonstrated by coupling multiresponsive liquid crystal/polymer composite (LCPC) films and semi‐transparent perovskite solar cells (ST‐PSCs). In this design, fast and multiple stimuli‐responsive LCPC films are utilized as an inside layer to control the transparency of SPWs. The ST‐PSCs with competitive PCE and qualified transparency acting as an outside layer offer energy generation functionality. Benefiting from repeatable transparency transition modulated by external stimuli, a series of working modes are achieved in the SPWs providing distinguished and stable energy generation, energy saving, and privacy protection performances.
Smart photovoltaic windows (SPWs) are functional devices possessing the capabilities of electrical power output, energy saving, and privacy protection by managing sunlight under external stimuli and potentially applicable in the fields of energy‐saving buildings, automobiles, and switchable optoelectronics. However, long response time, low power conversion efficiency (PCE), poor stability and cycling performance, and monostimuli responsive behavior restrict their practical applications. To address these issues, high‐efficiency and reliable SPWs are demonstrated by coupling multiresponsive liquid crystal/polymer composite (LCPC) films and semi‐transparent perovskite solar cells (ST‐PSCs). In this design, fast and multiple stimuli‐responsive LCPC films are utilized as an inside layer to control the transparency of SPWs. The ST‐PSCs with competitive PCE and qualified transparency acting as an outside layer offer energy generation functionality. Benefiting from repeatable transparency transition modulated by external stimuli, a series of working modes are achieved in the SPWs providing distinguished and stable energy generation, energy saving, and privacy protection performances. Smart photovoltaic windows with distinguished electrical power generation, energy saving, and privacy protection are enabled by coupling of multiresponsive liquid crystal/polymer composite (LCPC) films and semi‐transparent perovskite solar cells (ST‐PSC). In this design, fast and stable multiresponsive LCPC films are utilized as an inside layer to control the transparency, and high‐performance ST‐PSCs as an outside layer to offer energy generation functionality.
Author Liang, Xiao
Qi, Yuyang
Liu, Yumin
Jiang, Yun
Yu, Li
Zhao, Xing‐Zhong
Wang, Shaofu
Xia, Yu
Yang, Huai
Author_xml – sequence: 1
  givenname: Yu
  surname: Xia
  fullname: Xia, Yu
  organization: Jianghan University
– sequence: 2
  givenname: Xiao
  surname: Liang
  fullname: Liang, Xiao
  organization: Peking University
– sequence: 3
  givenname: Yun
  surname: Jiang
  fullname: Jiang, Yun
  organization: Jianghan University
– sequence: 4
  givenname: Shaofu
  surname: Wang
  fullname: Wang, Shaofu
  organization: Wuhan University
– sequence: 5
  givenname: Yuyang
  surname: Qi
  fullname: Qi, Yuyang
  organization: Jianghan University
– sequence: 6
  givenname: Yumin
  surname: Liu
  fullname: Liu, Yumin
  email: ymliu@jhun.edu.cn
  organization: Jianghan University
– sequence: 7
  givenname: Li
  surname: Yu
  fullname: Yu, Li
  email: li.yu@hubu.edu.cn
  organization: Hubei University
– sequence: 8
  givenname: Huai
  orcidid: 0000-0002-3773-6666
  surname: Yang
  fullname: Yang, Huai
  email: yanghuai@pku.edu.cn
  organization: Peking University
– sequence: 9
  givenname: Xing‐Zhong
  surname: Zhao
  fullname: Zhao, Xing‐Zhong
  organization: Wuhan University
BookMark eNqFkctuEzEUhi1UJErplrUl1gm-dS7LapTSSilUpIjl6MRzTF089tR2Us2OR-AVeDWehEmDilSpwpvjxf-dTzr_a3Lgg0dC3nI254yJ94C-nwvGa8ZKwV6QQ15wNSsqxQ4e_1K8Iscp3bLpqZozKQ_Jr3P77eb3j58LY6y26PVIwXf0MzoLa4d01UPM9Oom5LANLoPV9Kv1XbhPdOF3iY6uR3q5cdlGTEPwyW6RLu3dxna0iWPK4GgT-iEkm5GeWdenB8MKezt5ryP4NEBEP1kwhm36vsutgoNIG3QuvSEvDbiEx3_nEflytrhuzmfLTx8umtPlTMuTgs0QAE60AQNScS4AuxJFXaCpaqZAq3WBsq4qVUojWFXpUjLd8VIxxVVRF0YekXf7vUMMdxtMub0Nm-gnZSvExJVciWpKzfcpHUNKEU07RDvdaGw5a3dNtLsm2scmJkA9AbTNkG3wOYJ1z2P1Hru3Dsf_SNrTxcfLf-wfrGKkzQ
CitedBy_id crossref_primary_10_3390_en15113972
crossref_primary_10_1002_aenm_202200713
crossref_primary_10_1038_s41377_022_01032_y
crossref_primary_10_1038_s43246_022_00325_4
crossref_primary_10_1063_5_0237977
crossref_primary_10_1002_adfm_202308314
crossref_primary_10_1021_acsmaterialsau_4c00122
crossref_primary_10_1039_D4TA07138G
crossref_primary_10_1080_02678292_2024_2363338
crossref_primary_10_1093_ce_zkab031
crossref_primary_10_1002_adma_202309459
crossref_primary_10_1021_acsami_2c07462
crossref_primary_10_1021_acsnano_4c12107
crossref_primary_10_1002_adma_202306423
crossref_primary_10_1021_acs_jpcc_2c01399
crossref_primary_10_1002_adma_202104661
crossref_primary_10_1002_solr_202500052
crossref_primary_10_1002_smll_202202144
crossref_primary_10_1021_acsmaterialslett_3c01523
crossref_primary_10_1002_adfm_202308312
crossref_primary_10_1016_j_xcrp_2020_100108
crossref_primary_10_1002_adfm_202406937
crossref_primary_10_1021_acsami_1c18473
crossref_primary_10_1002_adfm_202415921
crossref_primary_10_1016_j_molliq_2024_124180
crossref_primary_10_1021_acsnano_0c01517
crossref_primary_10_1080_02678292_2024_2361268
crossref_primary_10_1002_adfm_202415208
crossref_primary_10_1038_s41467_023_36706_7
crossref_primary_10_1002_adfm_202402124
crossref_primary_10_1039_D4TC00212A
crossref_primary_10_1002_adfm_202100686
crossref_primary_10_1002_advs_202407177
crossref_primary_10_1002_smll_202406986
crossref_primary_10_1007_s40843_022_2332_9
crossref_primary_10_1021_acsami_2c17770
crossref_primary_10_1002_inf2_12154
crossref_primary_10_1021_acsami_3c03804
crossref_primary_10_1002_nano_202100163
crossref_primary_10_1039_D2CC05797B
crossref_primary_10_1002_adma_202000631
crossref_primary_10_1016_j_nanoen_2020_105090
crossref_primary_10_1088_1361_648X_adaa43
crossref_primary_10_1002_inf2_12522
crossref_primary_10_3788_COL202422_053301
crossref_primary_10_1038_s41377_022_00930_5
crossref_primary_10_1002_solr_202200863
crossref_primary_10_1002_adfm_202109597
crossref_primary_10_1007_s40820_024_01547_6
crossref_primary_10_1038_s41377_024_01541_y
crossref_primary_10_1002_cjoc_202400527
Cites_doi 10.1016/j.ccr.2004.02.008
10.1039/C5EE01050K
10.1039/c2nr31954c
10.1126/science.aai7899
10.1002/adma.201401400
10.1021/acsami.7b06607
10.1038/s41467-017-01842-4
10.1038/nature25989
10.1002/aenm.201502104
10.1039/C7MH00224F
10.1002/macp.1989.021900926
10.1126/science.aad9302
10.1039/C7SE00383H
10.1016/j.jphotochemrev.2017.11.002
10.1016/j.nanoen.2015.02.028
10.1002/(SICI)1521-4095(200002)12:4<251::AID-ADMA251>3.0.CO;2-4
10.1002/admi.201500118
10.1021/am404800m
10.1039/C5EE00896D
10.1002/adom.201500314
10.1088/0957-4484/27/9/095202
10.1016/j.rser.2007.05.001
10.1126/science.aam7093
10.1002/adma.201704208
10.1109/JDT.2005.861595
10.1002/aenm.201401347
10.1038/nature21694
10.1002/adma.201703852
10.1016/j.joule.2018.09.005
10.1021/jacs.6b06320
10.1002/adfm.201800113
10.1016/j.solmat.2016.07.010
10.1016/j.buildenv.2015.02.021
10.1039/c1ee01231b
10.1021/am501648z
10.1021/acs.jpcc.5b11144
10.1038/383608a0
10.1016/S0927-0248(02)00259-3
10.1038/nenergy.2017.104
10.1039/C4EE01389A
10.1002/adma.201501145
10.1002/aenm.201400379
10.1021/jp9002017
10.1021/acsami.5b04040
10.1021/acsami.5b10830
10.1038/s41563-017-0006-0
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201900720
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_201900720
AENM201900720
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Hubei Province
  funderid: 2018CFB508
– fundername: National Natural Science Foundation of China
  funderid: 51720105002; 61404060; 51303007
– fundername: National Basic Research Program of China (973 Program)
  funderid: 2018YFB0703704
– fundername: Wuhan Youth Science and Technology Program
  funderid: 2015071704011602
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3560-eaaa5cfafa34112aed7e296ef8904ac4b6e3988473f2088c730cd1740414696f3
ISSN 1614-6832
IngestDate Fri Jul 25 12:07:46 EDT 2025
Tue Jul 01 01:43:30 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
Wed Jan 22 16:40:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3560-eaaa5cfafa34112aed7e296ef8904ac4b6e3988473f2088c730cd1740414696f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3773-6666
PQID 2284771428
PQPubID 886389
PageCount 8
ParticipantIDs proquest_journals_2284771428
crossref_primary_10_1002_aenm_201900720
crossref_citationtrail_10_1002_aenm_201900720
wiley_primary_10_1002_aenm_201900720_AENM201900720
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 2
2015; 13
2018; 28
2017; 8
2004; 248
2017; 1
2017; 2
2015; 5
2015; 3
2017; 4
2014; 26
2008; 12
2009; 113
2017; 29
1996; 383
2006; 2
2011; 4
2017; 355
2015; 8
2015; 7
2017; 9
2016; 120
2003; 76
2017; 358
2015; 89
2016; 6
2018; 17
2018; 2
2014; 4
2015; 27
2000; 12
2018; 555
2016; 157
2016; 352
2018; 30
2016; 138
1989; 190
2014; 7
2016; 27
2012; 4
2014; 6
2017; 544
2016; 8
2018; 35
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 1
  start-page: 2120
  year: 2017
  publication-title: Sustainable Energy Fuels
– volume: 544
  start-page: 217
  year: 2017
  publication-title: Nature
– volume: 13
  start-page: 249
  year: 2015
  publication-title: Nano Energy
– volume: 35
  start-page: 1
  year: 2018
  publication-title: J. Photochem. Photobiol., C
– volume: 113
  start-page: 6878
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 27
  start-page: 3632
  year: 2015
  publication-title: Adv. Mater.
– volume: 26
  start-page: 4895
  year: 2014
  publication-title: Adv. Mater.
– volume: 6
  start-page: 2415
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 878
  year: 2017
  publication-title: Mater. Horiz.
– volume: 2
  start-page: 1657
  year: 2018
  publication-title: Joule
– volume: 8
  start-page: 1722
  year: 2017
  publication-title: Nat. Commun.
– volume: 12
  start-page: 251
  year: 2000
  publication-title: Adv. Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 157
  start-page: 660
  year: 2016
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 8
  start-page: 2922
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 1524
  year: 2015
  publication-title: Adv. Opt. Mater.
– volume: 352
  start-page: 922
  year: 2016
  publication-title: Science
– volume: 17
  start-page: 261
  year: 2018
  publication-title: Nat. Mater.
– volume: 76
  start-page: 489
  year: 2003
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 27
  year: 2016
  publication-title: Nanotechnology
– volume: 248
  start-page: 1479
  year: 2004
  publication-title: Coord. Chem. Rev.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 355
  start-page: 1062
  year: 2017
  publication-title: Science
– volume: 89
  start-page: 107
  year: 2015
  publication-title: Build. Environ.
– volume: 120
  start-page: 4233
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 358
  start-page: 745
  year: 2017
  publication-title: Science
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 4523
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 190
  start-page: 2255
  year: 1989
  publication-title: Macromol. Chem. Phys.
– volume: 4
  start-page: 6863
  year: 2012
  publication-title: Nanoscale
– volume: 383
  start-page: 608
  year: 1996
  publication-title: Nature
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 2
  year: 2015
  publication-title: Adv. Mater. Inter.
– volume: 12
  start-page: 2265
  year: 2008
  publication-title: Renewable Sustainable Energy Rev.
– volume: 4
  start-page: 2567
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 9290
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 2968
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 32
  year: 2006
  publication-title: J. Disp. Technol.
– volume: 8
  start-page: 1578
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 555
  start-page: 497
  year: 2018
  publication-title: Nature
– ident: e_1_2_7_30_1
  doi: 10.1016/j.ccr.2004.02.008
– ident: e_1_2_7_39_1
  doi: 10.1039/C5EE01050K
– ident: e_1_2_7_46_1
  doi: 10.1039/c2nr31954c
– ident: e_1_2_7_3_1
  doi: 10.1126/science.aai7899
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.201401400
– ident: e_1_2_7_36_1
  doi: 10.1021/acsami.7b06607
– ident: e_1_2_7_14_1
  doi: 10.1038/s41467-017-01842-4
– ident: e_1_2_7_24_1
  doi: 10.1038/nature25989
– ident: e_1_2_7_28_1
  doi: 10.1002/aenm.201502104
– ident: e_1_2_7_45_1
  doi: 10.1039/C7MH00224F
– ident: e_1_2_7_44_1
  doi: 10.1002/macp.1989.021900926
– ident: e_1_2_7_12_1
  doi: 10.1126/science.aad9302
– ident: e_1_2_7_37_1
  doi: 10.1039/C7SE00383H
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jphotochemrev.2017.11.002
– ident: e_1_2_7_34_1
  doi: 10.1016/j.nanoen.2015.02.028
– ident: e_1_2_7_22_1
  doi: 10.1002/(SICI)1521-4095(200002)12:4<251::AID-ADMA251>3.0.CO;2-4
– ident: e_1_2_7_33_1
  doi: 10.1002/admi.201500118
– ident: e_1_2_7_18_1
  doi: 10.1021/am404800m
– ident: e_1_2_7_16_1
  doi: 10.1039/C5EE00896D
– ident: e_1_2_7_17_1
  doi: 10.1002/adom.201500314
– ident: e_1_2_7_40_1
  doi: 10.1088/0957-4484/27/9/095202
– ident: e_1_2_7_2_1
  doi: 10.1016/j.rser.2007.05.001
– ident: e_1_2_7_23_1
  doi: 10.1126/science.aam7093
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.201704208
– ident: e_1_2_7_21_1
  doi: 10.1109/JDT.2005.861595
– ident: e_1_2_7_19_1
  doi: 10.1002/aenm.201401347
– ident: e_1_2_7_1_1
  doi: 10.1038/nature21694
– ident: e_1_2_7_26_1
  doi: 10.1002/adma.201703852
– ident: e_1_2_7_5_1
  doi: 10.1016/j.joule.2018.09.005
– ident: e_1_2_7_29_1
  doi: 10.1021/jacs.6b06320
– ident: e_1_2_7_11_1
  doi: 10.1002/adfm.201800113
– ident: e_1_2_7_35_1
  doi: 10.1016/j.solmat.2016.07.010
– ident: e_1_2_7_4_1
  doi: 10.1016/j.buildenv.2015.02.021
– ident: e_1_2_7_20_1
  doi: 10.1039/c1ee01231b
– ident: e_1_2_7_9_1
  doi: 10.1021/am501648z
– ident: e_1_2_7_38_1
  doi: 10.1021/acs.jpcc.5b11144
– ident: e_1_2_7_6_1
  doi: 10.1038/383608a0
– ident: e_1_2_7_10_1
  doi: 10.1016/S0927-0248(02)00259-3
– ident: e_1_2_7_15_1
  doi: 10.1038/nenergy.2017.104
– ident: e_1_2_7_32_1
  doi: 10.1039/C4EE01389A
– ident: e_1_2_7_42_1
  doi: 10.1002/adma.201501145
– ident: e_1_2_7_8_1
  doi: 10.1002/aenm.201400379
– ident: e_1_2_7_31_1
  doi: 10.1021/jp9002017
– ident: e_1_2_7_43_1
  doi: 10.1021/acsami.5b04040
– ident: e_1_2_7_41_1
  doi: 10.1021/acsami.5b10830
– ident: e_1_2_7_13_1
  doi: 10.1038/s41563-017-0006-0
SSID ssj0000491033
Score 2.525913
Snippet Smart photovoltaic windows (SPWs) are functional devices possessing the capabilities of electrical power output, energy saving, and privacy protection by...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Automobiles
Efficiency
Energy conservation
Energy conversion efficiency
Energy management
high‐efficiency
liquid crystal composite films
Liquid crystals
multiresponsive
Optoelectronics
Perovskites
Photovoltaic cells
Polymer films
Polymer matrix composites
Privacy
Protective coatings
Response time
semi‐transparent perovskite solar cells
smart photovoltaic windows
Solar cells
Stimuli
Title High‐Efficiency and Reliable Smart Photovoltaic Windows Enabled by Multiresponsive Liquid Crystal Composite Films and Semi‐Transparent Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201900720
https://www.proquest.com/docview/2284771428
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F9AIHxK8IFLQHJA6WwV7biX2MQqoKkapSWpGerLW9q1pK4pLYReXEI_AKPA9vwZMw-2uHf3qxovXaK3u-zH4zmvmM0PNYfJRbVKqFOcSqYcLAD0YkdGPKIx4WhGee6B2eHQ0PT8M3i2jR633tVC01dfYy__jLvpLrWBXGwK6iS_Y_LGtvCgPwG-wLR7AwHP_JxqJIw1YrTKUYhOykVE2Hy1K2Rc1XcKVzfF7VFbiimpY5uIJ1UX3YOlPZOCUpqGzE3eiC2UsGsfr7piycyeZqW8v8wkqWdzHnoFyulK7znK1Ku7oSSadS6-mYbarLrUgLO3MROTsTtlxuuzR4bCoPmGo9BNqs3pex_0LV8J41tmCo1IltOFPZsh8zeNZYjL8zCfBzWvGmm9Tw26ot44eBNbjDWKc-WXdMqTsZ5510MKoUNfQ2bje5n_YIpTlL2VoIEQAf8kbEa3dDUwFgZ0Z_nqu0g6dHM3v-BtojELN4fbQ3fj17O7cpPwjGfC-QLR_m8YyMqEde7S6yS5Pa2KcbQUkKdHIH3daxCx4rIN5FPba-h251FC3voy8Ckt8-fW7BiAEq2IARSzDiLhixBiPWYMTZFf4BjFiBEWswYgtGLMEoVxBghHU7MMQtDLGEIZYwfIBOD6Ynk0NXfwXEzQOg4y6jlEY5p5wC4fIJZcWIkWTIeJx4Ic3DbMiCJAaSFXACW2YOW1ZeQJzthUACkiEPHqL-ulqzRwgHWZxQOipIyP0wgUjZD3kRs8DPWEwjnw-Qa156mmuJfPGllmWqxL1JKoyUWiMN0As7_0KJw_x25r6xYaodyDYlghqOhOThABFp17_cJd3B2ePrXPQE3Wz_b_uoX28a9hRodZ0903D9Dm80y6w
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Efficiency+and+Reliable+Smart+Photovoltaic+Windows+Enabled+by+Multiresponsive+Liquid+Crystal+Composite+Films+and+Semi%E2%80%90Transparent+Perovskite+Solar+Cells&rft.jtitle=Advanced+energy+materials&rft.au=Xia%2C+Yu&rft.au=Liang%2C+Xiao&rft.au=Jiang%2C+Yun&rft.au=Wang%2C+Shaofu&rft.date=2019-09-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=33&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201900720&rft.externalDBID=10.1002%252Faenm.201900720&rft.externalDocID=AENM201900720
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon