High‐Efficiency and Reliable Smart Photovoltaic Windows Enabled by Multiresponsive Liquid Crystal Composite Films and Semi‐Transparent Perovskite Solar Cells
Smart photovoltaic windows (SPWs) are functional devices possessing the capabilities of electrical power output, energy saving, and privacy protection by managing sunlight under external stimuli and potentially applicable in the fields of energy‐saving buildings, automobiles, and switchable optoelec...
Saved in:
Published in | Advanced energy materials Vol. 9; no. 33 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.09.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1614-6832 1614-6840 |
DOI | 10.1002/aenm.201900720 |
Cover
Loading…
Abstract | Smart photovoltaic windows (SPWs) are functional devices possessing the capabilities of electrical power output, energy saving, and privacy protection by managing sunlight under external stimuli and potentially applicable in the fields of energy‐saving buildings, automobiles, and switchable optoelectronics. However, long response time, low power conversion efficiency (PCE), poor stability and cycling performance, and monostimuli responsive behavior restrict their practical applications. To address these issues, high‐efficiency and reliable SPWs are demonstrated by coupling multiresponsive liquid crystal/polymer composite (LCPC) films and semi‐transparent perovskite solar cells (ST‐PSCs). In this design, fast and multiple stimuli‐responsive LCPC films are utilized as an inside layer to control the transparency of SPWs. The ST‐PSCs with competitive PCE and qualified transparency acting as an outside layer offer energy generation functionality. Benefiting from repeatable transparency transition modulated by external stimuli, a series of working modes are achieved in the SPWs providing distinguished and stable energy generation, energy saving, and privacy protection performances.
Smart photovoltaic windows with distinguished electrical power generation, energy saving, and privacy protection are enabled by coupling of multiresponsive liquid crystal/polymer composite (LCPC) films and semi‐transparent perovskite solar cells (ST‐PSC). In this design, fast and stable multiresponsive LCPC films are utilized as an inside layer to control the transparency, and high‐performance ST‐PSCs as an outside layer to offer energy generation functionality. |
---|---|
AbstractList | Smart photovoltaic windows (SPWs) are functional devices possessing the capabilities of electrical power output, energy saving, and privacy protection by managing sunlight under external stimuli and potentially applicable in the fields of energy‐saving buildings, automobiles, and switchable optoelectronics. However, long response time, low power conversion efficiency (PCE), poor stability and cycling performance, and monostimuli responsive behavior restrict their practical applications. To address these issues, high‐efficiency and reliable SPWs are demonstrated by coupling multiresponsive liquid crystal/polymer composite (LCPC) films and semi‐transparent perovskite solar cells (ST‐PSCs). In this design, fast and multiple stimuli‐responsive LCPC films are utilized as an inside layer to control the transparency of SPWs. The ST‐PSCs with competitive PCE and qualified transparency acting as an outside layer offer energy generation functionality. Benefiting from repeatable transparency transition modulated by external stimuli, a series of working modes are achieved in the SPWs providing distinguished and stable energy generation, energy saving, and privacy protection performances. Smart photovoltaic windows (SPWs) are functional devices possessing the capabilities of electrical power output, energy saving, and privacy protection by managing sunlight under external stimuli and potentially applicable in the fields of energy‐saving buildings, automobiles, and switchable optoelectronics. However, long response time, low power conversion efficiency (PCE), poor stability and cycling performance, and monostimuli responsive behavior restrict their practical applications. To address these issues, high‐efficiency and reliable SPWs are demonstrated by coupling multiresponsive liquid crystal/polymer composite (LCPC) films and semi‐transparent perovskite solar cells (ST‐PSCs). In this design, fast and multiple stimuli‐responsive LCPC films are utilized as an inside layer to control the transparency of SPWs. The ST‐PSCs with competitive PCE and qualified transparency acting as an outside layer offer energy generation functionality. Benefiting from repeatable transparency transition modulated by external stimuli, a series of working modes are achieved in the SPWs providing distinguished and stable energy generation, energy saving, and privacy protection performances. Smart photovoltaic windows with distinguished electrical power generation, energy saving, and privacy protection are enabled by coupling of multiresponsive liquid crystal/polymer composite (LCPC) films and semi‐transparent perovskite solar cells (ST‐PSC). In this design, fast and stable multiresponsive LCPC films are utilized as an inside layer to control the transparency, and high‐performance ST‐PSCs as an outside layer to offer energy generation functionality. |
Author | Liang, Xiao Qi, Yuyang Liu, Yumin Jiang, Yun Yu, Li Zhao, Xing‐Zhong Wang, Shaofu Xia, Yu Yang, Huai |
Author_xml | – sequence: 1 givenname: Yu surname: Xia fullname: Xia, Yu organization: Jianghan University – sequence: 2 givenname: Xiao surname: Liang fullname: Liang, Xiao organization: Peking University – sequence: 3 givenname: Yun surname: Jiang fullname: Jiang, Yun organization: Jianghan University – sequence: 4 givenname: Shaofu surname: Wang fullname: Wang, Shaofu organization: Wuhan University – sequence: 5 givenname: Yuyang surname: Qi fullname: Qi, Yuyang organization: Jianghan University – sequence: 6 givenname: Yumin surname: Liu fullname: Liu, Yumin email: ymliu@jhun.edu.cn organization: Jianghan University – sequence: 7 givenname: Li surname: Yu fullname: Yu, Li email: li.yu@hubu.edu.cn organization: Hubei University – sequence: 8 givenname: Huai orcidid: 0000-0002-3773-6666 surname: Yang fullname: Yang, Huai email: yanghuai@pku.edu.cn organization: Peking University – sequence: 9 givenname: Xing‐Zhong surname: Zhao fullname: Zhao, Xing‐Zhong organization: Wuhan University |
BookMark | eNqFkctuEzEUhi1UJErplrUl1gm-dS7LapTSSilUpIjl6MRzTF089tR2Us2OR-AVeDWehEmDilSpwpvjxf-dTzr_a3Lgg0dC3nI254yJ94C-nwvGa8ZKwV6QQ15wNSsqxQ4e_1K8Iscp3bLpqZozKQ_Jr3P77eb3j58LY6y26PVIwXf0MzoLa4d01UPM9Oom5LANLoPV9Kv1XbhPdOF3iY6uR3q5cdlGTEPwyW6RLu3dxna0iWPK4GgT-iEkm5GeWdenB8MKezt5ryP4NEBEP1kwhm36vsutgoNIG3QuvSEvDbiEx3_nEflytrhuzmfLTx8umtPlTMuTgs0QAE60AQNScS4AuxJFXaCpaqZAq3WBsq4qVUojWFXpUjLd8VIxxVVRF0YekXf7vUMMdxtMub0Nm-gnZSvExJVciWpKzfcpHUNKEU07RDvdaGw5a3dNtLsm2scmJkA9AbTNkG3wOYJ1z2P1Hru3Dsf_SNrTxcfLf-wfrGKkzQ |
CitedBy_id | crossref_primary_10_3390_en15113972 crossref_primary_10_1002_aenm_202200713 crossref_primary_10_1038_s41377_022_01032_y crossref_primary_10_1038_s43246_022_00325_4 crossref_primary_10_1063_5_0237977 crossref_primary_10_1002_adfm_202308314 crossref_primary_10_1021_acsmaterialsau_4c00122 crossref_primary_10_1039_D4TA07138G crossref_primary_10_1080_02678292_2024_2363338 crossref_primary_10_1093_ce_zkab031 crossref_primary_10_1002_adma_202309459 crossref_primary_10_1021_acsami_2c07462 crossref_primary_10_1021_acsnano_4c12107 crossref_primary_10_1002_adma_202306423 crossref_primary_10_1021_acs_jpcc_2c01399 crossref_primary_10_1002_adma_202104661 crossref_primary_10_1002_solr_202500052 crossref_primary_10_1002_smll_202202144 crossref_primary_10_1021_acsmaterialslett_3c01523 crossref_primary_10_1002_adfm_202308312 crossref_primary_10_1016_j_xcrp_2020_100108 crossref_primary_10_1002_adfm_202406937 crossref_primary_10_1021_acsami_1c18473 crossref_primary_10_1002_adfm_202415921 crossref_primary_10_1016_j_molliq_2024_124180 crossref_primary_10_1021_acsnano_0c01517 crossref_primary_10_1080_02678292_2024_2361268 crossref_primary_10_1002_adfm_202415208 crossref_primary_10_1038_s41467_023_36706_7 crossref_primary_10_1002_adfm_202402124 crossref_primary_10_1039_D4TC00212A crossref_primary_10_1002_adfm_202100686 crossref_primary_10_1002_advs_202407177 crossref_primary_10_1002_smll_202406986 crossref_primary_10_1007_s40843_022_2332_9 crossref_primary_10_1021_acsami_2c17770 crossref_primary_10_1002_inf2_12154 crossref_primary_10_1021_acsami_3c03804 crossref_primary_10_1002_nano_202100163 crossref_primary_10_1039_D2CC05797B crossref_primary_10_1002_adma_202000631 crossref_primary_10_1016_j_nanoen_2020_105090 crossref_primary_10_1088_1361_648X_adaa43 crossref_primary_10_1002_inf2_12522 crossref_primary_10_3788_COL202422_053301 crossref_primary_10_1038_s41377_022_00930_5 crossref_primary_10_1002_solr_202200863 crossref_primary_10_1002_adfm_202109597 crossref_primary_10_1007_s40820_024_01547_6 crossref_primary_10_1038_s41377_024_01541_y crossref_primary_10_1002_cjoc_202400527 |
Cites_doi | 10.1016/j.ccr.2004.02.008 10.1039/C5EE01050K 10.1039/c2nr31954c 10.1126/science.aai7899 10.1002/adma.201401400 10.1021/acsami.7b06607 10.1038/s41467-017-01842-4 10.1038/nature25989 10.1002/aenm.201502104 10.1039/C7MH00224F 10.1002/macp.1989.021900926 10.1126/science.aad9302 10.1039/C7SE00383H 10.1016/j.jphotochemrev.2017.11.002 10.1016/j.nanoen.2015.02.028 10.1002/(SICI)1521-4095(200002)12:4<251::AID-ADMA251>3.0.CO;2-4 10.1002/admi.201500118 10.1021/am404800m 10.1039/C5EE00896D 10.1002/adom.201500314 10.1088/0957-4484/27/9/095202 10.1016/j.rser.2007.05.001 10.1126/science.aam7093 10.1002/adma.201704208 10.1109/JDT.2005.861595 10.1002/aenm.201401347 10.1038/nature21694 10.1002/adma.201703852 10.1016/j.joule.2018.09.005 10.1021/jacs.6b06320 10.1002/adfm.201800113 10.1016/j.solmat.2016.07.010 10.1016/j.buildenv.2015.02.021 10.1039/c1ee01231b 10.1021/am501648z 10.1021/acs.jpcc.5b11144 10.1038/383608a0 10.1016/S0927-0248(02)00259-3 10.1038/nenergy.2017.104 10.1039/C4EE01389A 10.1002/adma.201501145 10.1002/aenm.201400379 10.1021/jp9002017 10.1021/acsami.5b04040 10.1021/acsami.5b10830 10.1038/s41563-017-0006-0 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201900720 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_201900720 AENM201900720 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Hubei Province funderid: 2018CFB508 – fundername: National Natural Science Foundation of China funderid: 51720105002; 61404060; 51303007 – fundername: National Basic Research Program of China (973 Program) funderid: 2018YFB0703704 – fundername: Wuhan Youth Science and Technology Program funderid: 2015071704011602 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3560-eaaa5cfafa34112aed7e296ef8904ac4b6e3988473f2088c730cd1740414696f3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:07:46 EDT 2025 Tue Jul 01 01:43:30 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 Wed Jan 22 16:40:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3560-eaaa5cfafa34112aed7e296ef8904ac4b6e3988473f2088c730cd1740414696f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3773-6666 |
PQID | 2284771428 |
PQPubID | 886389 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2284771428 crossref_primary_10_1002_aenm_201900720 crossref_citationtrail_10_1002_aenm_201900720 wiley_primary_10_1002_aenm_201900720_AENM201900720 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 2 2015; 13 2018; 28 2017; 8 2004; 248 2017; 1 2017; 2 2015; 5 2015; 3 2017; 4 2014; 26 2008; 12 2009; 113 2017; 29 1996; 383 2006; 2 2011; 4 2017; 355 2015; 8 2015; 7 2017; 9 2016; 120 2003; 76 2017; 358 2015; 89 2016; 6 2018; 17 2018; 2 2014; 4 2015; 27 2000; 12 2018; 555 2016; 157 2016; 352 2018; 30 2016; 138 1989; 190 2014; 7 2016; 27 2012; 4 2014; 6 2017; 544 2016; 8 2018; 35 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 1 start-page: 2120 year: 2017 publication-title: Sustainable Energy Fuels – volume: 544 start-page: 217 year: 2017 publication-title: Nature – volume: 13 start-page: 249 year: 2015 publication-title: Nano Energy – volume: 35 start-page: 1 year: 2018 publication-title: J. Photochem. Photobiol., C – volume: 113 start-page: 6878 year: 2009 publication-title: J. Phys. Chem. C – volume: 27 start-page: 3632 year: 2015 publication-title: Adv. Mater. – volume: 26 start-page: 4895 year: 2014 publication-title: Adv. Mater. – volume: 6 start-page: 2415 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 878 year: 2017 publication-title: Mater. Horiz. – volume: 2 start-page: 1657 year: 2018 publication-title: Joule – volume: 8 start-page: 1722 year: 2017 publication-title: Nat. Commun. – volume: 12 start-page: 251 year: 2000 publication-title: Adv. Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 157 start-page: 660 year: 2016 publication-title: Sol. Energy Mater. Sol. Cells – volume: 8 start-page: 2922 year: 2015 publication-title: Energy Environ. Sci. – volume: 3 start-page: 1524 year: 2015 publication-title: Adv. Opt. Mater. – volume: 352 start-page: 922 year: 2016 publication-title: Science – volume: 17 start-page: 261 year: 2018 publication-title: Nat. Mater. – volume: 76 start-page: 489 year: 2003 publication-title: Sol. Energy Mater. Sol. Cells – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 27 year: 2016 publication-title: Nanotechnology – volume: 248 start-page: 1479 year: 2004 publication-title: Coord. Chem. Rev. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 355 start-page: 1062 year: 2017 publication-title: Science – volume: 89 start-page: 107 year: 2015 publication-title: Build. Environ. – volume: 120 start-page: 4233 year: 2016 publication-title: J. Phys. Chem. C – volume: 358 start-page: 745 year: 2017 publication-title: Science – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 8 start-page: 4523 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 190 start-page: 2255 year: 1989 publication-title: Macromol. Chem. Phys. – volume: 4 start-page: 6863 year: 2012 publication-title: Nanoscale – volume: 383 start-page: 608 year: 1996 publication-title: Nature – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 2 year: 2015 publication-title: Adv. Mater. Inter. – volume: 12 start-page: 2265 year: 2008 publication-title: Renewable Sustainable Energy Rev. – volume: 4 start-page: 2567 year: 2011 publication-title: Energy Environ. Sci. – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 6 start-page: 9290 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 2968 year: 2014 publication-title: Energy Environ. Sci. – volume: 2 start-page: 32 year: 2006 publication-title: J. Disp. Technol. – volume: 8 start-page: 1578 year: 2015 publication-title: Energy Environ. Sci. – volume: 555 start-page: 497 year: 2018 publication-title: Nature – ident: e_1_2_7_30_1 doi: 10.1016/j.ccr.2004.02.008 – ident: e_1_2_7_39_1 doi: 10.1039/C5EE01050K – ident: e_1_2_7_46_1 doi: 10.1039/c2nr31954c – ident: e_1_2_7_3_1 doi: 10.1126/science.aai7899 – ident: e_1_2_7_7_1 doi: 10.1002/adma.201401400 – ident: e_1_2_7_36_1 doi: 10.1021/acsami.7b06607 – ident: e_1_2_7_14_1 doi: 10.1038/s41467-017-01842-4 – ident: e_1_2_7_24_1 doi: 10.1038/nature25989 – ident: e_1_2_7_28_1 doi: 10.1002/aenm.201502104 – ident: e_1_2_7_45_1 doi: 10.1039/C7MH00224F – ident: e_1_2_7_44_1 doi: 10.1002/macp.1989.021900926 – ident: e_1_2_7_12_1 doi: 10.1126/science.aad9302 – ident: e_1_2_7_37_1 doi: 10.1039/C7SE00383H – ident: e_1_2_7_25_1 doi: 10.1016/j.jphotochemrev.2017.11.002 – ident: e_1_2_7_34_1 doi: 10.1016/j.nanoen.2015.02.028 – ident: e_1_2_7_22_1 doi: 10.1002/(SICI)1521-4095(200002)12:4<251::AID-ADMA251>3.0.CO;2-4 – ident: e_1_2_7_33_1 doi: 10.1002/admi.201500118 – ident: e_1_2_7_18_1 doi: 10.1021/am404800m – ident: e_1_2_7_16_1 doi: 10.1039/C5EE00896D – ident: e_1_2_7_17_1 doi: 10.1002/adom.201500314 – ident: e_1_2_7_40_1 doi: 10.1088/0957-4484/27/9/095202 – ident: e_1_2_7_2_1 doi: 10.1016/j.rser.2007.05.001 – ident: e_1_2_7_23_1 doi: 10.1126/science.aam7093 – ident: e_1_2_7_27_1 doi: 10.1002/adma.201704208 – ident: e_1_2_7_21_1 doi: 10.1109/JDT.2005.861595 – ident: e_1_2_7_19_1 doi: 10.1002/aenm.201401347 – ident: e_1_2_7_1_1 doi: 10.1038/nature21694 – ident: e_1_2_7_26_1 doi: 10.1002/adma.201703852 – ident: e_1_2_7_5_1 doi: 10.1016/j.joule.2018.09.005 – ident: e_1_2_7_29_1 doi: 10.1021/jacs.6b06320 – ident: e_1_2_7_11_1 doi: 10.1002/adfm.201800113 – ident: e_1_2_7_35_1 doi: 10.1016/j.solmat.2016.07.010 – ident: e_1_2_7_4_1 doi: 10.1016/j.buildenv.2015.02.021 – ident: e_1_2_7_20_1 doi: 10.1039/c1ee01231b – ident: e_1_2_7_9_1 doi: 10.1021/am501648z – ident: e_1_2_7_38_1 doi: 10.1021/acs.jpcc.5b11144 – ident: e_1_2_7_6_1 doi: 10.1038/383608a0 – ident: e_1_2_7_10_1 doi: 10.1016/S0927-0248(02)00259-3 – ident: e_1_2_7_15_1 doi: 10.1038/nenergy.2017.104 – ident: e_1_2_7_32_1 doi: 10.1039/C4EE01389A – ident: e_1_2_7_42_1 doi: 10.1002/adma.201501145 – ident: e_1_2_7_8_1 doi: 10.1002/aenm.201400379 – ident: e_1_2_7_31_1 doi: 10.1021/jp9002017 – ident: e_1_2_7_43_1 doi: 10.1021/acsami.5b04040 – ident: e_1_2_7_41_1 doi: 10.1021/acsami.5b10830 – ident: e_1_2_7_13_1 doi: 10.1038/s41563-017-0006-0 |
SSID | ssj0000491033 |
Score | 2.525913 |
Snippet | Smart photovoltaic windows (SPWs) are functional devices possessing the capabilities of electrical power output, energy saving, and privacy protection by... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Automobiles Efficiency Energy conservation Energy conversion efficiency Energy management high‐efficiency liquid crystal composite films Liquid crystals multiresponsive Optoelectronics Perovskites Photovoltaic cells Polymer films Polymer matrix composites Privacy Protective coatings Response time semi‐transparent perovskite solar cells smart photovoltaic windows Solar cells Stimuli |
Title | High‐Efficiency and Reliable Smart Photovoltaic Windows Enabled by Multiresponsive Liquid Crystal Composite Films and Semi‐Transparent Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201900720 https://www.proquest.com/docview/2284771428 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F9AIHxK8IFLQHJA6WwV7biX2MQqoKkapSWpGerLW9q1pK4pLYReXEI_AKPA9vwZMw-2uHf3qxovXaK3u-zH4zmvmM0PNYfJRbVKqFOcSqYcLAD0YkdGPKIx4WhGee6B2eHQ0PT8M3i2jR633tVC01dfYy__jLvpLrWBXGwK6iS_Y_LGtvCgPwG-wLR7AwHP_JxqJIw1YrTKUYhOykVE2Hy1K2Rc1XcKVzfF7VFbiimpY5uIJ1UX3YOlPZOCUpqGzE3eiC2UsGsfr7piycyeZqW8v8wkqWdzHnoFyulK7znK1Ku7oSSadS6-mYbarLrUgLO3MROTsTtlxuuzR4bCoPmGo9BNqs3pex_0LV8J41tmCo1IltOFPZsh8zeNZYjL8zCfBzWvGmm9Tw26ot44eBNbjDWKc-WXdMqTsZ5510MKoUNfQ2bje5n_YIpTlL2VoIEQAf8kbEa3dDUwFgZ0Z_nqu0g6dHM3v-BtojELN4fbQ3fj17O7cpPwjGfC-QLR_m8YyMqEde7S6yS5Pa2KcbQUkKdHIH3daxCx4rIN5FPba-h251FC3voy8Ckt8-fW7BiAEq2IARSzDiLhixBiPWYMTZFf4BjFiBEWswYgtGLMEoVxBghHU7MMQtDLGEIZYwfIBOD6Ynk0NXfwXEzQOg4y6jlEY5p5wC4fIJZcWIkWTIeJx4Ic3DbMiCJAaSFXACW2YOW1ZeQJzthUACkiEPHqL-ulqzRwgHWZxQOipIyP0wgUjZD3kRs8DPWEwjnw-Qa156mmuJfPGllmWqxL1JKoyUWiMN0As7_0KJw_x25r6xYaodyDYlghqOhOThABFp17_cJd3B2ePrXPQE3Wz_b_uoX28a9hRodZ0903D9Dm80y6w |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Efficiency+and+Reliable+Smart+Photovoltaic+Windows+Enabled+by+Multiresponsive+Liquid+Crystal+Composite+Films+and+Semi%E2%80%90Transparent+Perovskite+Solar+Cells&rft.jtitle=Advanced+energy+materials&rft.au=Xia%2C+Yu&rft.au=Liang%2C+Xiao&rft.au=Jiang%2C+Yun&rft.au=Wang%2C+Shaofu&rft.date=2019-09-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=33&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201900720&rft.externalDBID=10.1002%252Faenm.201900720&rft.externalDocID=AENM201900720 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |