High‐Efficiency and Reliable Smart Photovoltaic Windows Enabled by Multiresponsive Liquid Crystal Composite Films and Semi‐Transparent Perovskite Solar Cells
Smart photovoltaic windows (SPWs) are functional devices possessing the capabilities of electrical power output, energy saving, and privacy protection by managing sunlight under external stimuli and potentially applicable in the fields of energy‐saving buildings, automobiles, and switchable optoelec...
Saved in:
Published in | Advanced energy materials Vol. 9; no. 33 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Smart photovoltaic windows (SPWs) are functional devices possessing the capabilities of electrical power output, energy saving, and privacy protection by managing sunlight under external stimuli and potentially applicable in the fields of energy‐saving buildings, automobiles, and switchable optoelectronics. However, long response time, low power conversion efficiency (PCE), poor stability and cycling performance, and monostimuli responsive behavior restrict their practical applications. To address these issues, high‐efficiency and reliable SPWs are demonstrated by coupling multiresponsive liquid crystal/polymer composite (LCPC) films and semi‐transparent perovskite solar cells (ST‐PSCs). In this design, fast and multiple stimuli‐responsive LCPC films are utilized as an inside layer to control the transparency of SPWs. The ST‐PSCs with competitive PCE and qualified transparency acting as an outside layer offer energy generation functionality. Benefiting from repeatable transparency transition modulated by external stimuli, a series of working modes are achieved in the SPWs providing distinguished and stable energy generation, energy saving, and privacy protection performances.
Smart photovoltaic windows with distinguished electrical power generation, energy saving, and privacy protection are enabled by coupling of multiresponsive liquid crystal/polymer composite (LCPC) films and semi‐transparent perovskite solar cells (ST‐PSC). In this design, fast and stable multiresponsive LCPC films are utilized as an inside layer to control the transparency, and high‐performance ST‐PSCs as an outside layer to offer energy generation functionality. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1614-6832 1614-6840 |
DOI: | 10.1002/aenm.201900720 |