Simulations and Tests of MCP-BSCCO-2212 Superconducting Fault Current Limiters

Superconducting fault current limiters (SCFCLs) represent a promising solution to the problem of increasing short- circuit currents in the grid. The SCFCL is based on the fast transition from the superconducting state to the normal state, causing a sudden increase in the impedance of the network. In...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on applied superconductivity Vol. 22; no. 2; p. 5600106
Main Authors de Sousa, W. T. B., Polasek, A., Silva, F. A., Dias, R., Jurelo, A. R., de Andrade, R.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Superconducting fault current limiters (SCFCLs) represent a promising solution to the problem of increasing short- circuit currents in the grid. The SCFCL is based on the fast transition from the superconducting state to the normal state, causing a sudden increase in the impedance of the network. In this paper, we simulate the behavior of resistive-type SCFCL modules. The SCFCL modules are based on MCP-BSCCO 2212 coils. The superconductor acts as a nonlinear resistance that varies with the current and the temperature. The behavior of the simulated curves is consistent with the experimental results. Short-circuit currents as high as 37 kA peak were limited to about 10% of their peak values in the first half cycle.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2012.2187189