Reproducibly emitting reference materials for volatile and semi-volatile organic compounds—using finite element modeling for emission predictions

Recent research into emissions of (semi-)volatile organic compounds [(S)VOC] from solid materials has focused on the development of suitable reference materials for quality assurance/quality control of emission test chamber measurements, which fulfill requirements such as homogenous and reproducible...

Full description

Saved in:
Bibliographic Details
Published inAir quality, atmosphere and health Vol. 10; no. 10; pp. 1237 - 1246
Main Authors Mull, Birte, Sauerwald, Tilman, Schultealbert, Caroline, Horn, Wolfgang, Brödner, Doris, Richter, Matthias
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.12.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent research into emissions of (semi-)volatile organic compounds [(S)VOC] from solid materials has focused on the development of suitable reference materials for quality assurance/quality control of emission test chamber measurements, which fulfill requirements such as homogenous and reproducible (S)VOC release. The approach of this study was to find a method for preparation of a material with predictable (S)VOC emission rates. A VOC (styrene) and an SVOC (2,6-diisopropylnaphthalene, DIPN), loaded into either vacuum grease or a 1:1 mixture of paraffin/squalane, have been tested. For the prediction of the emission rates, a model using the finite element method (FEM) was created to simulate the (S)VOC emission profiles. Theoretical and experimental results obtained in a Micro-Chamber/Thermal Extractor (μ-CTE™) and in 24 L emission test chamber measurements were in good agreement. Further properties were investigated concerning the material applicability, such as shelf life and inter-laboratory comparability. The maximum relative standard deviation in the inter-laboratory study was found to be 20%.
ISSN:1873-9318
1873-9326
DOI:10.1007/s11869-017-0508-6