An Ultra-Low-Voltage Ultra-Low-Power CMOS Miller OTA With Rail-to-Rail Input/Output Swing

An ultra-low-voltage ultra-low-power CMOS Miller operational transconductance amplifier (OTA) with rail-to-rail input/output swing is presented. The topology is based on combining bulk-driven differential pair and dc level shifters, with the transistors work in weak inversion. The improved Miller OT...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems. II, Express briefs Vol. 54; no. 10; pp. 843 - 847
Main Authors Ferreira, L.H.C., Pimenta, T.C., Moreno, R.L.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An ultra-low-voltage ultra-low-power CMOS Miller operational transconductance amplifier (OTA) with rail-to-rail input/output swing is presented. The topology is based on combining bulk-driven differential pair and dc level shifters, with the transistors work in weak inversion. The improved Miller OTA has been successfully verified in a standard 0.35-mum CMOS process. Experimental results have confirmed that, at a minimum supply voltage of 600 mV, lower than the threshold voltage, the topology presents almost rail-to-rail input and output swings and consumes only 550 nW.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2007.902216