CMOS DSB Transmitter With Low TX Noise for UHF RFID Reader System-on-Chip

This paper presents a new design for a CMOS double-sideband (DSB) RF transmitter (TX) integrated circuit (IC) for UHF RF indentification (RFID) reader system-on-chip. Due to the strong demand for high linearity, low TX noise, and low cost, a CMOS passive up-conversion mixer with an adaptive bias cir...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 58; no. 12; pp. 3467 - 3474
Main Authors CHOI, Kyonggon, YOO, Sungchul, KIM, Minsu, KIM, Hyungchul, RYU, Seonghan, KANG, Sanghoon, JUNG, Sungchan, YANG, Youngoo
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a new design for a CMOS double-sideband (DSB) RF transmitter (TX) integrated circuit (IC) for UHF RF indentification (RFID) reader system-on-chip. Due to the strong demand for high linearity, low TX noise, and low cost, a CMOS passive up-conversion mixer with an adaptive bias circuit is proposed. High linearity of the passive mixer can be maintained over a wide range of dc levels from the dc-coupled IF signals using the proposed adaptive biasing circuit. A linear two-stage CMOS power amplifier (PA) follows the up-conversion mixer so that the overall third-order output intercept point (OIP3) of the two-stage PA is improved by the optimized design of the first stage in its biasing condition, the cell size, and due to inter-stage matching. The designed TX IC is fabricated using a 0.18-μm standard CMOS process and the implemented passive mixer exhibits a low double-sideband noise figure (DSB NF) of 4 dB and a high OIP3 of 13.3 dBm. The implemented PA exhibits a high-output 1-dB compression point (OP1dB) of 18 dBm, and a clear sweet spot in OIP3 of as high as 36.8 dBm at the two-tone average output power of 10 dBm. The implemented overall TX IC has a size of 960 × 670 × μm 2 and the overall circuit performed with a gain of 17.8 dB, a high OP1dB of 17.6 dBm, an OIP3 of 28 dBm, and has a low DSB NF of 11.2 dB while consuming a biasing current of 58 mA from a 3.3-V supply. The proposed design also satisfies the spectral mask of the RFID standard for an output power of up to 18 dBm for the double-sideband amplitude shift-keying signals.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9480
1557-9670
DOI:10.1109/TMTT.2010.2076890