Synthesis of amorphous and metastable Ti40Al60 alloys by mechanical alloying of elemental powders

Ti40Al60 amorphous and metastable alloys have been prepared by mechanical alloying (MA), under controlled milling conditions in a planetary mill. Three different quantities of kinetic energy at the collision instant have been achieved by using balls of different size, phi b = 5, 8 and 12 mm, keeping...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science Vol. 29; no. 9; pp. 2436 - 2444
Main Authors GUO, W, IASONNA, A, MAGINI, M, MARTELLI, S, PADELLA, F
Format Journal Article
LanguageEnglish
Published Heidelberg Springer 01.05.1994
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ti40Al60 amorphous and metastable alloys have been prepared by mechanical alloying (MA), under controlled milling conditions in a planetary mill. Three different quantities of kinetic energy at the collision instant have been achieved by using balls of different size, phi b = 5, 8 and 12 mm, keeping constant all other device parameters. Assuming the collision between the balls and the vial walls to be inelastic, during the early stage of alloying, the amount of energy transferred to the trapped powder could be estimated. The experimental results show that the milling with balls of diameter phi b = 5 or 8 mm leads to a solid-state amorphization of the Ti40Al60 mixture, through the attainment of a supersaturated solid solution of aluminium into alpha -titanium. Otherwise, the milling causes the nucleation of the A1-fcc disordered form of the TiAl intermetallic compound. The end products of MA-induced solid-state reaction (SSR) have been ascribed to the different temperature reached by the powder during each collision and to the reaction time scale for the formation of the amorphous phase, delta ta, and for the nucleation of the non-equilibrium intermetallic compound, delta td. Differential scanning calorimetry has indicated that the crystallization of amorphous samples follows a two-step reaction. At a temperature Tc approx 400 deg C, the amorphous phase crystallizes into the A1-fcc. TiAl phase having a measured heat of crystallization of 6.2 kJ(g at) exp --1 . Upon further heating, the system undergoes A1 - > L10 reordering transition with an enthalpy release of approx 3.2 kJ (g at) exp --1 .
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0022-2461
1573-4803
DOI:10.1007/bf00363438