Global bifurcation for nonlinear equations
Using a bifurcation result on noncompact branches of solutions in an abstract setting, we establish the existence of global bifurcation for the following nonlinear equation − div ( a | ∇ u | p − 2 ∇ u ) − μ 0 b | u | p − 2 u = q ( λ , x , u , ∇ u ) subject to Dirichlet boundary conditions under cert...
Saved in:
Published in | Nonlinear analysis Vol. 69; no. 8; pp. 2362 - 2368 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
15.10.2008
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0362-546X 1873-5215 |
DOI | 10.1016/j.na.2007.08.013 |
Cover
Summary: | Using a bifurcation result on noncompact branches of solutions in an abstract setting, we establish the existence of global bifurcation for the following nonlinear equation
−
div
(
a
|
∇
u
|
p
−
2
∇
u
)
−
μ
0
b
|
u
|
p
−
2
u
=
q
(
λ
,
x
,
u
,
∇
u
)
subject to Dirichlet boundary conditions under certain assumptions on
a
,
b
and
q
when
μ
0
is not an eigenvalue of the above divergence form. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2007.08.013 |