Dielectric relaxation and hopping conduction in reduced graphite oxide
Graphite oxide reduced by sodium borohydride was characterised and its electrical conduction investigated with impedance spectroscopy. Thermal dependence of electrical modulus (instead of permittivity, its inverse) was calculated from complex impedance spectra, an approach that prevents any peak in...
Saved in:
Published in | Journal of applied physics Vol. 119; no. 22 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
14.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Graphite oxide reduced by sodium borohydride was characterised and its electrical conduction investigated with impedance spectroscopy. Thermal dependence of electrical modulus (instead of permittivity, its inverse) was calculated from complex impedance spectra, an approach that prevents any peak in dielectric loss (imaginary component) from being swarmed by large dc conductivity. Two loss peaks appeared at each tested frequency, in a sample of either degree of reduction. The set of weaker peak should arise from the relaxation of some polar bonds, as proposed earlier by us. The stronger loss peaks may correspond to the hopping of conduction electrons; variable range hopping is also consistent with the observed thermal dependence of conductivity. However, nearer ambient temperature there is a change in mechanism, to band transport, with an activation energy of fairly similar values as derived from both loss peaks and conductivity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4953357 |