Moxifloxacin based fluorescence imaging of intestinal goblet cells

Goblet cells (GCs) in the intestine are specialized epithelial cells that secrete mucins to form the protective mucous layer. GCs are important in maintaining intestinal homeostasis, and the alteration of GCs is observed in inflammatory bowel diseases (IBDs) and neoplastic lesions. In the Barrett’s...

Full description

Saved in:
Bibliographic Details
Published inBiomedical optics express Vol. 11; no. 10; pp. 5814 - 5825
Main Authors Lee, Seunghun, Kim, Seonghan, Nam, Kwangwoo, Kim, Sun Young, Lee, Seungrag, Myung, Seung-Jae, Kim, Ki Hean
Format Journal Article
LanguageEnglish
Published Optical Society of America 01.10.2020
Online AccessGet full text

Cover

Loading…
More Information
Summary:Goblet cells (GCs) in the intestine are specialized epithelial cells that secrete mucins to form the protective mucous layer. GCs are important in maintaining intestinal homeostasis, and the alteration of GCs is observed in inflammatory bowel diseases (IBDs) and neoplastic lesions. In the Barrett’s esophagus, the presence of GCs is used as a marker of specialized intestinal metaplasia. Various endomicroscopic imaging methods have been used for imaging intestinal GCs, but high-speed and high-contrast GC imaging has been still difficult. In this study, we developed a high-contrast endoscopic GC imaging method: fluorescence endomicroscopy using moxifloxacin as a GC labeling agent. Moxifloxacin based fluorescence imaging of GCs was verified by using two-photon microscopy (TPM) in the normal mouse colon. Label-free TPM, which could visualize GCs in a negative contrast, was used as the reference. High-speed GC imaging was demonstrated by using confocal microscopy and endomicroscopy in the normal mouse colon. Confocal microscopy was applied to dextran sulfate sodium (DSS) induced colitis mouse models for the detection of GC depletion. Moxifloxacin based GC imaging was demonstrated not only by 3D microscopies but also by wide-field fluorescence microscopy, and intestinal GCs in the superficial region were imaged. Moxifloxacin based endomicroscopy has a potential for the application to human subjects by using FDA approved moxifloxacin.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2156-7085
2156-7085
DOI:10.1364/BOE.402350