Application of Universal Kriging for Calibrating Offline-Programming Industrial Robots

The requirement for absolute positioning accuracy has also increased with the increasing use of industrial robots in offline programming. The present study proposed Universal Kriging (UK) for calibrating offline-programming industrial robots. This method was based on the similarities in positional e...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent & robotic systems Vol. 94; no. 2; pp. 339 - 348
Main Authors Cai, Ying, Yuan, Peijiang, Shi, Zhenyun, Chen, Dongdong, Cao, Shuangqian
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.05.2019
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The requirement for absolute positioning accuracy has also increased with the increasing use of industrial robots in offline programming. The present study proposed Universal Kriging (UK) for calibrating offline-programming industrial robots. This method was based on the similarities in positional errors. In addition, the method represented the positional errors as a deterministic drift and a residual part, which considered both geometric and non-geometric errors. The semivariogram was designed and the drift was determined to implement UK. Then, the method was applied for predicting positional errors and realizing error compensations. In addition, contrast experiments were performed to verify the practicality and superiority of UK compared with Ordinary Kriging (OK). Experimental results showed that after calibration by UK, the maximum of the original spatial positional errors reduced from 1.3073 mm to 0.2110 mm, that is, by 83.86%. Moreover, the maximum of the spatial positional errors reduced from 1.3073 mm to 0.3148 mm by only 75.92% after calibration using OK. An evident increase was reported in the maximum of the spatial positional errors from 0.3148 mm to 0.2110 mm, with an improvement rate of 32.97%. This is of great significance when accuracy is less than 0.5 mm. Overall, the experimental results proved the effectiveness of UK.
ISSN:0921-0296
1573-0409
DOI:10.1007/s10846-018-0823-7