A Low-Power Fast-Transient 90-nm Low-Dropout Regulator With Multiple Small-Gain Stages

A power-efficient 90-nm low-dropout regulator (LDO) with multiple small-gain stages is proposed in this paper. The proposed channel-resistance-insensitive small-gain stages provide loop gain enhancements without introducing low-frequency poles before the unity-gain frequency (UGF). As a result, both...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 45; no. 11; pp. 2466 - 2475
Main Authors Ho, Marco, Ka Nang Leung, Ki-Leung Mak
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.11.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A power-efficient 90-nm low-dropout regulator (LDO) with multiple small-gain stages is proposed in this paper. The proposed channel-resistance-insensitive small-gain stages provide loop gain enhancements without introducing low-frequency poles before the unity-gain frequency (UGF). As a result, both the loop gain and bandwidth of the LDO are improved, so that the accuracy and response speed of voltage regulation are significantly enhanced. As no on-chip compensation capacitor is required, the active chip area of the LDO is only 72.5 μm × 37.8 μm. Experimental results show that the LDO is capable of providing an output of 0.9 V with maximum output current of 50 mA from a 1-V supply. The LDO has a quiescent current of 9.3 μA, and has significantly improvement in line and load transient responses as well as performance in power-supply rejection ratio (PSRR).
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2010.2072611