Toward a skin-material interface with vacuum-integrated capped macroporous scaffolds

Avulsion, epidermal marsupialization, and infection cause failure at the skin-material interface. A robust interface would permit implantable robotics, prosthetics, and other medical devices; reconstruction of surgical defects, and long-term access to blood vessels and body cavities. Torus-shaped ca...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part B, Applied biomaterials Vol. 105; no. 5; pp. 1307 - 1318
Main Authors Stynes, Gil D, Kiroff, George K, Morrison, Wayne A, Page, Richard S, Kirkland, Mark A
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Avulsion, epidermal marsupialization, and infection cause failure at the skin-material interface. A robust interface would permit implantable robotics, prosthetics, and other medical devices; reconstruction of surgical defects, and long-term access to blood vessels and body cavities. Torus-shaped cap-scaffold structures were designed to work in conjunction with negative pressure to address the three causes of failure. Six wounds were made on the backs of each of four 3-month old pigs. Four unmodified (no caps) scaffolds were implanted along with 20 cap-scaffolds. Collagen type 4 was attached to 21 implants. Negative pressure then was applied. Structures were explanted and assessed histologically at day 7 and day 28. At day 28, there was close tissue apposition to scaffolds, without detectable reactions from defensive or interfering cells. Three cap-scaffolds explanted at day 28 showed likely attachment of epidermis to the cap or cap-scaffold junction, without deeper marsupialization. The combination of toric-shaped cap-scaffolds with negative pressure appears to be an intrinsically biocompatible system, enabling a robust skin-material interface. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1307-1318, 2017.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1552-4973
1552-4981
DOI:10.1002/jbm.b.33649