Orthogonal Time-Frequency Space Modulation: A Promising Next-Generation Waveform

Sixth-generation (6G) wireless networks are envisioned to provide global coverage for the intelligent digital society of the near future, ranging from traditional terrestrial to non-terrestri-al networks, where reliable communications in high-mobility scenarios at high carrier frequencies would play...

Full description

Saved in:
Bibliographic Details
Published inIEEE wireless communications Vol. 28; no. 4; pp. 136 - 144
Main Authors Wei, Zhiqiang, Yuan, Weijie, Li, Shuangyang, Yuan, Jinhong, Bharatula, Ganesh, Hadani, Ronny, Hanzo, Lajos
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sixth-generation (6G) wireless networks are envisioned to provide global coverage for the intelligent digital society of the near future, ranging from traditional terrestrial to non-terrestri-al networks, where reliable communications in high-mobility scenarios at high carrier frequencies would play a vital role. In such scenarios, the conventional orthogonal frequency division multiplexing (OFDM) modulation, that has been widely used in both the fourth-generation (4G) and the emerging fifth-generation (5G) cellular systems as well as in WiFi networks, is vulnerable to severe Doppler spread. In this context, this article aims to introduce a recently proposed two-dimension-al modulation scheme referred to as orthogonal time-frequency space (OTFS) modulation, which conveniently accommodates the channel dynamics via modulating information in the delay-Doppler domain. This article provides an easy-reading overview of OTFS, highlighting its underlying motivation and specific features. The critical challenges of OTFS and our preliminary results are presented. We also discuss a range of promising research opportunities and potential applications of OTFS in 6G wireless networks.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1536-1284
1558-0687
DOI:10.1109/MWC.001.2000408