A meta-learning BCI for estimating decision confidence
Objective. We investigated whether a recently introduced transfer-learning technique based on meta-learning could improve the performance of brain–computer interfaces (BCIs) for decision-confidence prediction with respect to more traditional machine learning methods. Approach. We adapted the meta-le...
Saved in:
Published in | Journal of neural engineering Vol. 19; no. 4; pp. 46009 - 46025 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1741-2560 1741-2552 1741-2552 |
DOI | 10.1088/1741-2552/ac7ba8 |
Cover
Loading…
Summary: | Objective.
We investigated whether a recently introduced transfer-learning technique based on meta-learning could improve the performance of brain–computer interfaces (BCIs) for decision-confidence prediction with respect to more traditional machine learning methods.
Approach.
We adapted the meta-learning by biased regularisation algorithm to the problem of predicting decision confidence from electroencephalography (EEG) and electro-oculogram (EOG) data on a decision-by-decision basis in a difficult target discrimination task based on video feeds. The method exploits previous participants’ data to produce a prediction algorithm that is then quickly tuned to new participants. We compared it with with the traditional single-subject training almost universally adopted in BCIs, a state-of-the-art transfer learning technique called domain adversarial neural networks, a transfer-learning adaptation of a zero-training method we used recently for a similar task, and with a simple baseline algorithm.
Main results.
The meta-learning approach was significantly better than other approaches in most conditions, and much better in situations where limited data from a new participant are available for training/tuning. Meta-learning by biased regularisation allowed our BCI to seamlessly integrate information from past participants with data from a specific user to produce high-performance predictors. Its robustness in the presence of small training sets is a real-plus in BCI applications, as new users need to train the BCI for a much shorter period.
Significance.
Due to the variability and noise of EEG/EOG data, BCIs need to be normally trained with data from a specific participant. This work shows that even better performance can be obtained using our version of meta-learning by biased regularisation. |
---|---|
Bibliography: | JNE-105257.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1741-2560 1741-2552 1741-2552 |
DOI: | 10.1088/1741-2552/ac7ba8 |