Eigenvalue problems for the p-Laplacian
We study nonlinear eigenvalue problems for the p -Laplace operator subject to different kinds of boundary conditions on a bounded domain. Using the Ljusternik–Schnirelman principle, we show the existence of a nondecreasing sequence of nonnegative eigenvalues. We prove the simplicity and isolation of...
Saved in:
Published in | Nonlinear analysis Vol. 64; no. 5; pp. 1057 - 1099 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.03.2006
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We study nonlinear eigenvalue problems for the
p
-Laplace operator subject to different kinds of boundary conditions on a bounded domain. Using the Ljusternik–Schnirelman principle, we show the existence of a nondecreasing sequence of nonnegative eigenvalues. We prove the simplicity and isolation of the principal eigenvalue and give a characterization for the second eigenvalue. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2005.05.056 |