A Wearable Biomechatronic Interface for Controlling Robots with Voluntary Foot Movements

This paper presents an experimental investigation on a novel interface for high level control of mechatronic systems, by exploiting voluntary user's foot movements. Based on a biomechanical analysis of the foot anatomy and joint kinematics, a sensory system is designed for detecting pressure va...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ASME transactions on mechatronics Vol. 12; no. 1; pp. 1 - 11
Main Authors Carrozza, M.C., Persichetti, A., Laschi, C., Vecchi, F., Lazzarini, R., Vacalebri, P., Dario, P.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1083-4435
1941-014X
DOI10.1109/TMECH.2006.886250

Cover

Loading…
More Information
Summary:This paper presents an experimental investigation on a novel interface for high level control of mechatronic systems, by exploiting voluntary user's foot movements. Based on a biomechanical analysis of the foot anatomy and joint kinematics, a sensory system is designed for detecting pressure variations on selected areas of the insole, obtained from four different foot movements that can be purposively controlled by the person. A prototype is developed that integrates four sensitive areas, battery, and electronics into a wearable insole; electronics are used for data acquisition and wireless transmission, in order to have a stand-alone device. The prototype foot interface is experimentally tested in the control of a prosthetic hand, as a model of a typical device that can be effectively operated by foot movements. Experimental trials were conducted with ten able-bodied subjects and the results confirmed the usability and effectiveness of the foot interface in terms of correct and prompt transmission of the user's intention to the controlled device. Comparative experimental trials were performed with electromyography (EMG)-based control of the same prosthesis, which represents the most advanced interface currently available in clinical implants for amputees. The comparative results showed a significant decrease in required adaptation and learning from the user's side
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1083-4435
1941-014X
DOI:10.1109/TMECH.2006.886250