Automated Optimization in the Design Process of a Magnetically Levitated Table for Machine Tool Applications

A novel magnetically levitated work piece table has been designed. This device is able to perform linear and rotational motions in four axes with high accuracy, so that different operations can be run on the work piece. Numerical simulations support the design of this table. Since the table's m...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on magnetics Vol. 46; no. 8; pp. 2787 - 2790
Main Authors Banucu, Remus, Albert, Jan, Reinauer, Veronika, Scheiblich, Christian, Rucker, Wolfgang M., Hafla, Alexander, Huf, Alexander
Format Journal Article Conference Proceeding
LanguageEnglish
Published New York, NY IEEE 01.08.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A novel magnetically levitated work piece table has been designed. This device is able to perform linear and rotational motions in four axes with high accuracy, so that different operations can be run on the work piece. Numerical simulations support the design of this table. Since the table's motion is idle in a certain range, simulations have to be run for a high number of potential positions. When optimizing the device's layout by varying different parameters, simulations are needed for all positions in which the device shows an extreme behavior. The numerousness of simulations leads to very high efforts concerning pre- and post-processing. Therefore, a new software is developed, which fully automates the whole design process consisting of drawing, meshing, calculating, and optimizing the magnetically levitated table.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2010.2042434