Effects of pyrolysis parameters on the distribution of pyrolysis products of Miscanthus

This work presents a comprehensive study on the effects of pyrolysis parameters (pyrolysis temperature, residence time, and heating rate) on the distribution of pyrolysis products of Miscanthus. Py-GC/MS (Pyrolysis-gas chromatography/mass) was conducted to identify building blocks of value-added che...

Full description

Saved in:
Bibliographic Details
Published inProgress in reaction kinetics and mechanism Vol. 46
Main Authors Hu, Zhangmao, Zhou, Tong, Tian, Hong, Feng, Leihua, Yao, Can, Yin, Yanshan, Chen, Donglin
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.05.2021
Sage Publications Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This work presents a comprehensive study on the effects of pyrolysis parameters (pyrolysis temperature, residence time, and heating rate) on the distribution of pyrolysis products of Miscanthus. Py-GC/MS (Pyrolysis-gas chromatography/mass) was conducted to identify building blocks of value-added chemical from Miscanthus. The results showed that the main pyrolysis products of Miscanthus were ketone, aldehyde, phenol, heterocycles, and aromatic compounds. The representative compounds of ketone and aldehyde compounds produced at different pyrolysis temperatures changed obviously, while the representative compounds of phenolic, heterocyclic, and aromatic compounds had no obvious change. Large-scale pyrolysis of Miscanthus had begun at 400°C, and the relative content of pyrolysis products from Miscanthus reached the maximum of 98.34% at 700°C. The relative peak area ratio of phenol and aromatic compounds reached the maximum and minimum at the residence time of 5 and 10 s, while the relative peak area ratio of ketone compounds showed the opposite trend. The relative peak area ratio of aldehyde compounds was higher under shorter or longer residence time. For heterocyclic compounds, the relative peak area ratio reached the maximum of 27.0% at residence time of 10 s. The faster or slower heating rate was beneficial to the production of aldehyde and phenol compounds. The relative peak area ratio of ketone compounds reached the maximum at 10,000°C/s, 70°C/s, and 10°C/s, and the relative peak area ratio tendency of heterocyclic compounds was similar to ketone. For aromatic compounds, the overall fluctuations were large, and the relative peak area ratio was the highest at the heating rate of 100°C/s.
ISSN:1468-6783
1471-406X
DOI:10.1177/14686783211010970