Morphology and Mechanical Properties in Polymer Blends of Photocurable Polymer and Polycarbonate

Relationships between the morphologies and mechanical properties of binary blends of a photocurable polymer (2‐propenoic acid, (octahydro‐4,7‐methano‐1H‐indenediyl) bis(methylene)ester; DCA) and a linear polymer (poly(4,4′‐cyclohexylidene bisphenol carbonate); PCz) have been investigated. The blend...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular materials and engineering Vol. 288; no. 1; pp. 58 - 65
Main Authors Murata, Kazutaka, Amamiya, Akiko, Anazawa, Takanori
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.01.2003
WILEY‐VCH Verlag
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Relationships between the morphologies and mechanical properties of binary blends of a photocurable polymer (2‐propenoic acid, (octahydro‐4,7‐methano‐1H‐indenediyl) bis(methylene)ester; DCA) and a linear polymer (poly(4,4′‐cyclohexylidene bisphenol carbonate); PCz) have been investigated. The blend films are prepared by in situ photopolymerization of homogeneous mixtures of a DCA‐monomer and PCz. The phase structure has been converted from a semi‐interpenetrating polymer networks (semi‐IPN) structure to a bicontinuous structure by controlling the cure temperature. Bicontinuous phase‐separated structures can be obtained by curing a wide range of compositions of 17–50 wt.‐% PCz at high temperatures. Miscible semi‐IPN structures are attained by means of photopolymerization below the glass transition temperature of the homogenous mixture before performing photoirradiation, such that magnetic relaxation measurements showed the blend to be miscible in the 10 nm order. The tensile strength and modulus reached a maximum in those blends having an intermediate vague phase structure between semi‐IPN and bicontinuous structures that have a strong interfacial interaction, which leads to incomplete phase decomposition in the PCz‐rich matrix phase. The maximum strength and modulus prepared under optimum condition are inferior to those of the individual components. In contrast, the elongation and break energy are greatly improved in those blends with bicontinuous structures having a diffused phase boundary. DCA‐rich domain size in bicontinuous structure for DCA/PCz system, as a function of cure temperature; (□) 17 wt.‐% PCz, (○) 30 wt.‐% PCz, and (⋄) 50 wt.‐% PCz.
Bibliography:ark:/67375/WNG-40KQ7SDK-2
istex:849C1E7AEFF7046D4CFD26CDA9CB90641A215FED
ArticleID:MAME200290034
ISSN:1438-7492
1439-2054
DOI:10.1002/mame.200290034