Stability Enhancement of Zinc‐Ion Batteries Using Non‐Aqueous Electrolytes

Owing to their high energy density and low cost, zinc‐ion batteries (ZIBs) are gaining much in popularity. However, in practice, issues with hydrogen evolution, zinc dendrite development, corrosion, and passivation persist. Such drawbacks prove difficult to eradicate completely. To address these dif...

Full description

Saved in:
Bibliographic Details
Published inBatteries & supercaps Vol. 5; no. 5
Main Authors Kao‐ian, Wathanyu, Mohamad, Ahmad Azmin, Liu, Wei‐Ren, Pornprasertsuk, Rojana, Siwamogsatham, Siwaruk, Kheawhom, Soorathep
Format Journal Article
LanguageEnglish
Published 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Owing to their high energy density and low cost, zinc‐ion batteries (ZIBs) are gaining much in popularity. However, in practice, issues with hydrogen evolution, zinc dendrite development, corrosion, and passivation persist. Such drawbacks prove difficult to eradicate completely. To address these difficulties, many techniques have been proposed including inhibitor addition, artificial SEI, and Zn electrode modification. As a result, some researchers believe that using non‐proton donor electrolytes or nonaqueous electrolytes can fundamentally solve these problems. Herein, the efforts to apply nonaqueous electrolytes such as organic electrolytes, room‐temperature ionic liquids, and deep‐eutectic solvents to ZIBs are described. An understanding of the mechanisms of nonaqueous ZIBs (NZIBs) regarding zinc plating/stripping and intercalation/deintercalation is also highlighted. Importantly, research gaps are identified in order to pave the way for future study. In addition, an attempt is made to offer a viewpoint on critical topics as well as a benchmarking and enhancement of NZIB technologies. Non‐aqueous electrolyte for ZIB: Zinc‐ion batteries (ZIBs) are gaining much in popularity. However, in practice, issues with hydrogen evolution, zinc dendrite development, corrosion, and passivation persist. Herein, the efforts to apply non‐aqueous electrolytes in ZIBs are systematically reviewed. Furthermore, understanding non‐aqueous ZIBs (NZIBs) mechanisms regarding zinc plating/stripping and intercalation/deintercalation is also highlighted. Importantly, research gaps are identified to pave the way for future studies.
AbstractList Owing to their high energy density and low cost, zinc‐ion batteries (ZIBs) are gaining much in popularity. However, in practice, issues with hydrogen evolution, zinc dendrite development, corrosion, and passivation persist. Such drawbacks prove difficult to eradicate completely. To address these difficulties, many techniques have been proposed including inhibitor addition, artificial SEI, and Zn electrode modification. As a result, some researchers believe that using non‐proton donor electrolytes or nonaqueous electrolytes can fundamentally solve these problems. Herein, the efforts to apply nonaqueous electrolytes such as organic electrolytes, room‐temperature ionic liquids, and deep‐eutectic solvents to ZIBs are described. An understanding of the mechanisms of nonaqueous ZIBs (NZIBs) regarding zinc plating/stripping and intercalation/deintercalation is also highlighted. Importantly, research gaps are identified in order to pave the way for future study. In addition, an attempt is made to offer a viewpoint on critical topics as well as a benchmarking and enhancement of NZIB technologies. Non‐aqueous electrolyte for ZIB: Zinc‐ion batteries (ZIBs) are gaining much in popularity. However, in practice, issues with hydrogen evolution, zinc dendrite development, corrosion, and passivation persist. Herein, the efforts to apply non‐aqueous electrolytes in ZIBs are systematically reviewed. Furthermore, understanding non‐aqueous ZIBs (NZIBs) mechanisms regarding zinc plating/stripping and intercalation/deintercalation is also highlighted. Importantly, research gaps are identified to pave the way for future studies.
Owing to their high energy density and low cost, zinc‐ion batteries (ZIBs) are gaining much in popularity. However, in practice, issues with hydrogen evolution, zinc dendrite development, corrosion, and passivation persist. Such drawbacks prove difficult to eradicate completely. To address these difficulties, many techniques have been proposed including inhibitor addition, artificial SEI, and Zn electrode modification. As a result, some researchers believe that using non‐proton donor electrolytes or nonaqueous electrolytes can fundamentally solve these problems. Herein, the efforts to apply nonaqueous electrolytes such as organic electrolytes, room‐temperature ionic liquids, and deep‐eutectic solvents to ZIBs are described. An understanding of the mechanisms of nonaqueous ZIBs (NZIBs) regarding zinc plating/stripping and intercalation/deintercalation is also highlighted. Importantly, research gaps are identified in order to pave the way for future study. In addition, an attempt is made to offer a viewpoint on critical topics as well as a benchmarking and enhancement of NZIB technologies.
Author Kheawhom, Soorathep
Kao‐ian, Wathanyu
Pornprasertsuk, Rojana
Siwamogsatham, Siwaruk
Liu, Wei‐Ren
Mohamad, Ahmad Azmin
Author_xml – sequence: 1
  givenname: Wathanyu
  orcidid: 0000-0001-8261-5989
  surname: Kao‐ian
  fullname: Kao‐ian, Wathanyu
  organization: Chulalongkorn University
– sequence: 2
  givenname: Ahmad Azmin
  orcidid: 0000-0001-5525-7100
  surname: Mohamad
  fullname: Mohamad, Ahmad Azmin
  organization: Universiti Sains Malaysia
– sequence: 3
  givenname: Wei‐Ren
  orcidid: 0000-0003-0468-895X
  surname: Liu
  fullname: Liu, Wei‐Ren
  organization: Chung Yuan Christian University
– sequence: 4
  givenname: Rojana
  orcidid: 0000-0002-9792-1521
  surname: Pornprasertsuk
  fullname: Pornprasertsuk, Rojana
  organization: Nagaoka University of Technology
– sequence: 5
  givenname: Siwaruk
  surname: Siwamogsatham
  fullname: Siwamogsatham, Siwaruk
  organization: National Science and Technology Development Agency
– sequence: 6
  givenname: Soorathep
  orcidid: 0000-0002-3129-2750
  surname: Kheawhom
  fullname: Kheawhom, Soorathep
  email: soorathep.k@chula.ac.th
  organization: Chulalongkorn University
BookMark eNqFkMtOAjEUhhuDiYhsXfcFZuxtyrAEgkpCcCFs3ExKOdWaodW2xMzOR_AZfRKHYNSYGFfn-v2L7xR1nHeA0DklOSWEXaxVSjkjrB24pEeoywopM8kY7_zoT1A_xkfSAlSQAeddtLhNam1rmxo8dQ_KadiCS9gbfGedfn99m3mHx204BAsRr6J193jhXXsZPe_A7yKe1qBT8HWTIJ6hY6PqCP3P2kOry-lycp3Nb65mk9E807woaGYoBaIFMUJRI4RUnJeMDwrJNrLUJTOk3AAzpRTUGEKAKsKg3StOiRpKw3tIHHJ18DEGMJW2SSXrXQrK1hUl1V5LtddSfWlpsfwX9hTsVoXmb2B4AF5sDc0_39V4tFx-sx8GkHmB
CitedBy_id crossref_primary_10_1016_j_electacta_2023_143122
crossref_primary_10_1016_j_est_2024_111822
crossref_primary_10_1002_ange_202206717
crossref_primary_10_1039_D3YA00638G
crossref_primary_10_1016_j_aej_2023_12_042
crossref_primary_10_1007_s12209_023_00373_y
crossref_primary_10_1021_acsenergylett_4c00628
crossref_primary_10_1016_j_mset_2022_12_011
crossref_primary_10_1021_acsami_4c08820
crossref_primary_10_1002_jccs_202300357
crossref_primary_10_1002_adfm_202312332
crossref_primary_10_1002_cssc_202402101
crossref_primary_10_1039_D3TA05143A
crossref_primary_10_1016_j_electacta_2024_145059
crossref_primary_10_1021_acsaem_4c01012
crossref_primary_10_3390_ma17133327
crossref_primary_10_1016_j_cej_2023_141334
crossref_primary_10_1002_advs_202205874
crossref_primary_10_1002_advs_202410318
crossref_primary_10_1002_sstr_202200316
crossref_primary_10_1016_j_electacta_2023_142686
crossref_primary_10_1002_eem2_12728
crossref_primary_10_1002_adma_202206812
crossref_primary_10_1016_j_cej_2025_161327
crossref_primary_10_1002_aenm_202200255
crossref_primary_10_1016_j_cej_2025_160158
crossref_primary_10_3390_sci6030050
crossref_primary_10_1021_acs_energyfuels_2c03997
crossref_primary_10_1016_j_mset_2023_04_003
crossref_primary_10_1039_D3TA01014G
crossref_primary_10_1002_smll_202200550
crossref_primary_10_1016_j_electacta_2022_141365
crossref_primary_10_1021_acsenergylett_4c00967
crossref_primary_10_1016_j_electacta_2025_146061
crossref_primary_10_1021_acsami_4c07239
crossref_primary_10_1007_s40820_023_01304_1
crossref_primary_10_1002_anie_202206717
crossref_primary_10_1002_cssc_202202330
crossref_primary_10_1007_s12598_023_02441_7
crossref_primary_10_1007_s40820_023_01050_4
crossref_primary_10_1039_D3NR00898C
crossref_primary_10_55713_jmmm_v34i3_2084
crossref_primary_10_1021_acsami_3c06490
crossref_primary_10_1016_j_est_2024_115258
crossref_primary_10_1088_2752_5724_acef41
crossref_primary_10_1016_j_cej_2022_137796
crossref_primary_10_1149_1945_7111_aca363
crossref_primary_10_1016_j_geits_2023_100126
crossref_primary_10_1021_acs_jpcc_4c03418
crossref_primary_10_1016_j_jallcom_2025_178521
crossref_primary_10_1038_s41467_023_39877_5
Cites_doi 10.1016/j.cogsc.2020.100426
10.1021/acs.chemmater.7b00852
10.1021/cr300162p
10.1088/1742-6596/1052/1/012085
10.1149/1.1566017
10.1021/acs.jpcb.0c04784
10.3390/polym12122812
10.1021/acsnano.0c09205
10.1002/celc.201500444
10.1007/s40820-019-0300-2
10.1039/D0EE02620D
10.1021/acsami.9b10399
10.1016/j.mtadv.2021.100149
10.1002/celc.202100003
10.1016/j.jpcs.2014.02.003
10.1021/je2006049
10.1016/j.nanoen.2019.03.034
10.1016/j.electacta.2020.136937
10.1016/j.jpowsour.2016.10.083
10.1021/ef5028873
10.1016/j.elecom.2012.02.034
10.1021/acs.chemrev.9b00628
10.1002/aenm.201600826
10.1038/s41467-020-16259-9
10.1002/app.47654
10.1039/C8EE00378E
10.1002/eem2.12077
10.1016/j.electacta.2011.04.082
10.1016/j.electacta.2015.11.030
10.1039/D0RA03358H
10.1038/srep29225
10.1088/1674-4926/41/9/091704
10.1021/acs.chemmater.7b03340
10.1016/j.elecom.2005.09.011
10.1002/aenm.201601920
10.1002/anie.201106307
10.1016/j.mser.2018.10.002
10.1038/s41467-019-13436-3
10.1016/j.mattod.2014.10.040
10.1016/j.coelec.2021.100769
10.1002/celc.201402177
10.3389/fenrg.2020.616665
10.1039/c0cp02244f
10.1016/j.jelechem.2017.08.019
10.1002/qua.26014
10.1016/j.ensm.2021.08.017
10.1002/adma.201701968
10.3390/membranes5040752
10.1038/s41427-019-0167-1
10.3390/ijms21134689
10.1002/ente.202000358
10.1002/anie.202005603
10.1021/je800678e
10.1007/s11581-018-2644-x
10.1016/j.jpowsour.2007.06.113
10.1007/s10965-016-1043-0
10.1021/jp501665g
10.1007/s10854-018-0024-y
10.1007/s10008-012-1733-4
10.1149/2.0461507jes
10.1016/j.gee.2016.04.006
10.1038/s41598-019-44915-8
10.1002/cey2.67
10.1016/j.nanoen.2016.04.051
10.3390/en13010031
10.1016/j.joule.2020.03.002
10.1016/j.jechem.2020.05.056
10.1002/anie.201813223
10.1002/anie.202108624
10.1016/j.elecom.2015.09.011
10.1038/s41560-020-0674-x
10.1039/b210714g
10.1002/adfm.202001263
10.1149/2.0641906jes
10.1016/j.jpowsour.2006.10.042
10.1103/PhysRevB.93.045132
10.1016/j.jiec.2016.10.005
10.1016/j.electacta.2015.07.132
10.3390/ijms21093113
10.1149/2.F04122if
10.1016/j.pnsc.2013.04.005
10.1021/acsami.5b10024
10.1002/chem.200500883
10.1038/s41598-019-51692-x
10.1016/j.jpowsour.2013.09.082
10.3390/cryst7070221
10.1016/j.ensm.2020.04.030
10.1016/j.nanoen.2018.10.035
10.1016/j.nanoen.2018.12.086
10.1016/j.molliq.2021.117606
10.1039/C9TA13068C
10.1016/j.jcis.2009.10.034
10.1039/C8CC02250J
10.1016/j.electacta.2014.09.137
10.1002/adma.201908121
10.1039/D0CC05344A
10.1039/C9SE00744J
10.1021/acsenergylett.8b00565
10.1021/acsami.1c06131
10.1002/adma.201900668
10.1149/1945-7111/abe9cb
10.1021/jp311886h
10.1002/aenm.201800589
10.1002/aenm.202000982
10.1016/j.electacta.2013.03.027
10.1021/acsenergylett.0c02371
10.1080/09506608.2019.1653520
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/batt.202100361
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2566-6223
EndPage n/a
ExternalDocumentID 10_1002_batt_202100361
BATT202100361
Genre reviewArticle
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  funderid: MOST 109-2923-E-006-006; 110-2622-M-033-001; 109-2622-E-033-010; 110-2923-E-006-011; 110-3116-F-011-002; 108-E-033-MY3
– fundername: National Science and Technology Development Agency
  funderid: FDA-CO-2563-11897-TH; B16F640166
– fundername: NIPPON SHEET GLASS 2021
  funderid: 304.PBAHAN.6050464.N120
GroupedDBID 0R~
1OC
33P
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
AAZKR
ABCUV
ACCFJ
ACCZN
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFFPM
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMYDB
ARCSS
BFHJK
DCZOG
EBS
EJD
HGLYW
LATKE
LEEKS
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WXSBR
WYJ
ZZTAW
AAYXX
ABJNI
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
ID FETCH-LOGICAL-c3551-f11e0c40f4a1f446a338237562d68c82f08de2f8641ff00e1a02ec82a310a96f3
ISSN 2566-6223
IngestDate Tue Jul 01 02:02:51 EDT 2025
Thu Apr 24 23:02:51 EDT 2025
Wed Jan 22 16:24:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3551-f11e0c40f4a1f446a338237562d68c82f08de2f8641ff00e1a02ec82a310a96f3
ORCID 0000-0001-5525-7100
0000-0002-3129-2750
0000-0003-0468-895X
0000-0002-9792-1521
0000-0001-8261-5989
PageCount 31
ParticipantIDs crossref_citationtrail_10_1002_batt_202100361
crossref_primary_10_1002_batt_202100361
wiley_primary_10_1002_batt_202100361_BATT202100361
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Batteries & supercaps
PublicationYear 2022
References 2017; 7
2021; 168
2019; 11
2020; 120
2019; 55
2019; 10
2013; 23
2019; 57
2021; 28
2019; 58
2017; 45
2010; 342
2003; 150
2020; 59
2020; 13
2012; 18
2011; 13
2020; 12
2011; 56
2020; 56
2012; 16
2020; 11
2020; 124
2020; 10
2021; 30
2019; 166
2012; 51
2020; 8
2014; 1
2017; 801
2020; 7
2014; 248
2018; 8
2020; 5
2020; 4
2019; 60
2018; 3
2020; 3
2020; 2
2013; 97
2007; 174
2019; 25
2013; 117
2015; 176
2019; 119
2012; 21
2016; 197
2014; 118
2015; 162
2021; 8
2018; 29
2021; 6
2019; 9
2021; 42
2015; 5
2015; 18
2019; 31
2006; 12
2021; 343
2020; 41
2019; 2
2007; 165
2018; 1052
2017; 29
2016; 93
2003
2020; 32
2008; 53
2014; 114
2017; 337
2021; 13
2016; 6
2021; 15
2021; 54
2016; 1
2021; 11
2016; 3
2015; 29
2015; 60
2020; 30
2021
2020; 358
2019; 135
2005; 7
2019; 136
2020; 21
2020; 65
2018; 11
2021; 60
2018; 54
2016; 8
2014; 147
2016; 25
2016; 23
2020; 29
2014; 75
e_1_2_8_49_1
e_1_2_8_26_2
e_1_2_8_68_2
e_1_2_8_9_2
e_1_2_8_132_1
e_1_2_8_5_1
e_1_2_8_117_1
e_1_2_8_41_2
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_22_2
e_1_2_8_113_1
e_1_2_8_136_2
e_1_2_8_1_1
e_1_2_8_83_1
e_1_2_8_60_2
e_1_2_8_109_2
e_1_2_8_57_1
e_1_2_8_15_2
Lei L. (e_1_2_8_19_2) 2020; 7
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_120_2
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_30_2
e_1_2_8_76_2
e_1_2_8_34_1
e_1_2_8_11_2
e_1_2_8_53_2
e_1_2_8_128_2
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_72_2
e_1_2_8_29_2
e_1_2_8_25_2
e_1_2_8_67_2
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_2
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_63_2
e_1_2_8_118_2
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_137_1
e_1_2_8_40_2
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_2
e_1_2_8_14_1
e_1_2_8_37_2
e_1_2_8_56_2
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_52_2
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_102_1
e_1_2_8_71_2
e_1_2_8_125_1
e_1_2_8_28_2
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_119_2
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_130_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_89_1
e_1_2_8_66_2
e_1_2_8_85_1
e_1_2_8_62_2
e_1_2_8_111_2
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_59_2
e_1_2_8_36_2
Verma V. (e_1_2_8_38_2) 2019; 2
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_97_1
e_1_2_8_78_1
e_1_2_8_55_2
e_1_2_8_107_1
e_1_2_8_32_2
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_93_1
e_1_2_8_23_2
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
Kao-ian W. (e_1_2_8_12_1) 2021
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_8_1
e_1_2_8_65_2
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_135_2
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_2
e_1_2_8_77_2
e_1_2_8_127_2
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 801
  start-page: 545
  year: 2017
  publication-title: J. Electroanal. Chem.
– volume: 29
  start-page: 2616
  year: 2015
  publication-title: Energy Fuels
– volume: 29
  start-page: 9351
  year: 2017
  publication-title: Chem. Mater.
– volume: 5
  start-page: 752
  year: 2015
  end-page: 771
  publication-title: Membranes
– volume: 13
  start-page: 4625
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 45
  start-page: 375
  year: 2017
  publication-title: J. Ind. Eng. Chem.
– volume: 56
  start-page: 6071
  year: 2011
  publication-title: Electrochim. Acta
– volume: 53
  start-page: 2884
  year: 2008
  publication-title: J. Chem. Eng. Data
– volume: 3
  start-page: 598
  year: 2016
  end-page: 604
  publication-title: ChemElectroChem
– volume: 13
  start-page: 31
  year: 2020
  publication-title: Energies
– year: 2021
  publication-title: Mater. Today
– volume: 8
  year: 2021
  publication-title: Front. Energy Res.
– volume: 75
  start-page: 746
  year: 2014
  publication-title: J. Phys. Chem. Solids
– volume: 165
  start-page: 500
  year: 2007
  publication-title: J. Power Sources
– volume: 25
  start-page: 211
  year: 2016
  end-page: 217
  publication-title: Nano Energy
– volume: 10
  start-page: 5374
  year: 2019
  publication-title: Nat. Commun.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 101
  year: 2020
  publication-title: Sustain. Energy Fuels
– volume: 2
  start-page: 8667
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 15107
  year: 2019
  publication-title: Sci. Rep.
– volume: 65
  start-page: 356
  year: 2020
  publication-title: Int. Mater. Rev.
– volume: 197
  start-page: 344
  year: 2016
  publication-title: Electrochim. Acta
– volume: 120
  start-page: 7795
  year: 2020
  end-page: 7866
  publication-title: Chem. Rev.
– volume: 10
  start-page: 21071
  year: 2020
  end-page: 21081
  publication-title: RSC Adv.
– volume: 174
  start-page: 695
  year: 2007
  publication-title: J. Power Sources
– volume: 7
  year: 2020
  publication-title: Front. Mater.
– volume: 118
  start-page: 4895
  year: 2014
  publication-title: J. Phys. Chem. B
– volume: 7
  start-page: 221
  year: 2017
  publication-title: Crystals
– volume: 117
  start-page: 2662
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 56
  start-page: 4672
  year: 2011
  publication-title: J. Chem. Eng. Data
– volume: 60
  start-page: 21025
  year: 2021
  publication-title: Angew. Chem. Int. Ed.
– volume: 21
  start-page: 4689
  year: 2020
  publication-title: Int. J. Mol. Sci.
– volume: 168
  year: 2021
  publication-title: J. Electrochem. Soc.
– volume: 42
  start-page: 715
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 13
  start-page: 10224
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 358
  year: 2020
  publication-title: Electrochim. Acta
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 119
  year: 2019
  publication-title: Int. J. Quantum Chem.
– volume: 23
  start-page: 1
  year: 2016
  publication-title: J. Polym. Res.
– volume: 12
  start-page: 4
  year: 2020
  publication-title: NPG Asia Mater.
– volume: 11
  start-page: 2499
  year: 2020
  publication-title: Nat. Commun.
– volume: 6
  start-page: 29225
  year: 2016
  publication-title: Sci. Rep.
– volume: 6
  start-page: 395
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 8
  year: 2020
  publication-title: Energy Technol.
– volume: 11
  start-page: 69
  year: 2019
  publication-title: Nano-Micro Lett.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 11
  year: 2021
  publication-title: Mater. Today
– volume: 21
  start-page: 45
  year: 2012
  publication-title: Electrochem. Soc. Interface
– volume: 16
  start-page: 3105
  year: 2012
  publication-title: J. Solid State Electrochem.
– volume: 60
  start-page: 190
  year: 2015
  publication-title: Electrochem. Commun.
– volume: 21
  start-page: 3113
  year: 2020
  publication-title: Int. J. Mol. Sci.
– volume: 18
  start-page: 119
  year: 2012
  publication-title: Electrochem. Commun.
– volume: 29
  start-page: 19632
  year: 2018
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 124
  start-page: 10739
  year: 2020
  publication-title: J. Phys. Chem. B
– volume: 58
  start-page: 2760
  year: 2019
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 3021
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 60
  start-page: 171
  year: 2019
  publication-title: Nano Energy
– volume: 12
  start-page: 2812
  year: 2020
  publication-title: Polymer
– volume: 342
  start-page: 505
  year: 2010
  publication-title: J. Colloid Interface Sci.
– volume: 97
  start-page: 289
  year: 2013
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 1289
  year: 2021
  publication-title: ChemElectroChem
– volume: 8
  start-page: 3252
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 135
  start-page: 58
  year: 2019
  end-page: 84
  publication-title: Mater. Sci. Eng. R
– volume: 59
  start-page: 14577
  year: 2020
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 540
  year: 2020
  publication-title: Carbon Energy
– volume: 1
  start-page: 18
  year: 2016
  publication-title: Green Energy & Environ.
– volume: 337
  start-page: 204
  year: 2017
  publication-title: J. Power Sources
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 93
  year: 2016
  publication-title: Phys. Rev. B
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 881
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 28
  year: 2021
  publication-title: Curr. Opin. Green Sustain. Chem.
– volume: 18
  start-page: 252
  year: 2015
  publication-title: Mater. Today
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 54
  start-page: 194
  year: 2021
  publication-title: J. Energy Chem.
– volume: 150
  start-page: A608
  year: 2003
  publication-title: J. Electrochem. Soc.
– volume: 1052
  year: 2018
  publication-title: J. Phys. Conf. Ser.
– volume: 166
  start-page: A1063
  year: 2019
  publication-title: J. Electrochem. Soc.
– volume: 55
  start-page: 93
  year: 2019
  publication-title: Nano Energy
– volume: 248
  start-page: 1099
  year: 2014
  publication-title: J. Power Sources
– volume: 51
  start-page: 933
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 771
  year: 2020
  publication-title: Joule
– volume: 147
  start-page: 513
  year: 2014
  publication-title: Electrochim. Acta
– volume: 54
  start-page: 4457
  year: 2018
  publication-title: Chem. Commun.
– volume: 41
  year: 2020
  publication-title: J. Semiconductors
– volume: 114
  start-page: 11060
  year: 2014
  end-page: 11082
  publication-title: Chem. Rev.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 29
  start-page: 246
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 9
  start-page: 8441
  year: 2019
  publication-title: Sci. Rep.
– volume: 57
  start-page: 625
  year: 2019
  publication-title: Nano Energy
– volume: 11
  start-page: 32978
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 2971
  year: 2021
  publication-title: ACS Nano
– volume: 29
  start-page: 4874
  year: 2017
  publication-title: Chem. Mater.
– volume: 12
  start-page: 3082
  year: 2006
  publication-title: Chem. Eur. J.
– volume: 136
  start-page: 47654
  year: 2019
  publication-title: J. Appl. Polym. Sci.
– volume: 176
  start-page: 1447
  year: 2015
  publication-title: Electrochim. Acta
– volume: 13
  start-page: 32930
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 1366
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 516
  year: 2020
  publication-title: Energy Environ. Mater.
– volume: 5
  start-page: 743
  year: 2020
  publication-title: Nat. Energy
– start-page: 70
  year: 2003
  publication-title: Chem. Commun.
– volume: 56
  start-page: 11859
  year: 2020
  publication-title: Chem. Commun.
– volume: 162
  start-page: A1227
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 23
  start-page: 256
  year: 2013
  publication-title: Prog. Nat. Sci.
– volume: 30
  year: 2021
  publication-title: Curr. Opin. Electrochem.
– volume: 343
  year: 2021
  publication-title: J. Mol. Liq.
– volume: 7
  start-page: 1309
  year: 2005
  publication-title: Electrochem. Commun.
– volume: 1
  start-page: 1688
  year: 2014
  publication-title: ChemElectroChem
– volume: 25
  start-page: 1303
  year: 2019
  end-page: 1313
  publication-title: Ionics
– ident: e_1_2_8_55_2
  doi: 10.1016/j.cogsc.2020.100426
– ident: e_1_2_8_70_1
– ident: e_1_2_8_39_2
  doi: 10.1021/acs.chemmater.7b00852
– ident: e_1_2_8_59_2
  doi: 10.1021/cr300162p
– ident: e_1_2_8_80_1
  doi: 10.1088/1742-6596/1052/1/012085
– ident: e_1_2_8_89_1
  doi: 10.1149/1.1566017
– ident: e_1_2_8_110_2
  doi: 10.1021/acs.jpcb.0c04784
– ident: e_1_2_8_54_1
– ident: e_1_2_8_76_2
  doi: 10.3390/polym12122812
– ident: e_1_2_8_9_2
  doi: 10.1021/acsnano.0c09205
– ident: e_1_2_8_53_2
  doi: 10.1002/celc.201500444
– ident: e_1_2_8_6_1
  doi: 10.1007/s40820-019-0300-2
– ident: e_1_2_8_5_1
  doi: 10.1039/D0EE02620D
– ident: e_1_2_8_33_2
  doi: 10.1021/acsami.9b10399
– ident: e_1_2_8_7_1
  doi: 10.1016/j.mtadv.2021.100149
– ident: e_1_2_8_52_2
  doi: 10.1002/celc.202100003
– ident: e_1_2_8_126_1
– ident: e_1_2_8_86_1
  doi: 10.1016/j.jpcs.2014.02.003
– ident: e_1_2_8_68_2
  doi: 10.1021/je2006049
– ident: e_1_2_8_105_1
  doi: 10.1016/j.nanoen.2019.03.034
– ident: e_1_2_8_93_1
  doi: 10.1016/j.electacta.2020.136937
– ident: e_1_2_8_40_2
  doi: 10.1016/j.jpowsour.2016.10.083
– ident: e_1_2_8_56_2
  doi: 10.1021/ef5028873
– ident: e_1_2_8_63_2
  doi: 10.1016/j.elecom.2012.02.034
– ident: e_1_2_8_97_1
– ident: e_1_2_8_11_2
  doi: 10.1021/acs.chemrev.9b00628
– ident: e_1_2_8_41_2
  doi: 10.1002/aenm.201600826
– ident: e_1_2_8_103_1
  doi: 10.1038/s41467-020-16259-9
– ident: e_1_2_8_87_1
  doi: 10.1002/app.47654
– ident: e_1_2_8_108_1
– ident: e_1_2_8_37_2
  doi: 10.1039/C8EE00378E
– ident: e_1_2_8_99_1
– ident: e_1_2_8_104_1
  doi: 10.1002/eem2.12077
– ident: e_1_2_8_107_1
  doi: 10.1016/j.electacta.2011.04.082
– ident: e_1_2_8_111_2
  doi: 10.1016/j.electacta.2015.11.030
– volume: 2
  start-page: 8667
  year: 2019
  ident: e_1_2_8_38_2
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_8_49_1
  doi: 10.1039/D0RA03358H
– ident: e_1_2_8_72_2
  doi: 10.1038/srep29225
– ident: e_1_2_8_135_2
  doi: 10.1088/1674-4926/41/9/091704
– ident: e_1_2_8_29_2
  doi: 10.1021/acs.chemmater.7b03340
– ident: e_1_2_8_85_1
  doi: 10.1016/j.elecom.2005.09.011
– ident: e_1_2_8_129_1
  doi: 10.1002/aenm.201601920
– ident: e_1_2_8_4_1
  doi: 10.1002/anie.201106307
– ident: e_1_2_8_3_1
  doi: 10.1016/j.mser.2018.10.002
– ident: e_1_2_8_60_2
  doi: 10.1038/s41467-019-13436-3
– ident: e_1_2_8_23_2
  doi: 10.1016/j.mattod.2014.10.040
– ident: e_1_2_8_115_1
  doi: 10.1016/j.coelec.2021.100769
– ident: e_1_2_8_50_1
  doi: 10.1002/celc.201402177
– ident: e_1_2_8_78_1
  doi: 10.3389/fenrg.2020.616665
– ident: e_1_2_8_109_2
  doi: 10.1039/c0cp02244f
– ident: e_1_2_8_112_1
  doi: 10.1016/j.jelechem.2017.08.019
– ident: e_1_2_8_106_1
  doi: 10.1002/qua.26014
– ident: e_1_2_8_51_1
– ident: e_1_2_8_43_1
  doi: 10.1016/j.ensm.2021.08.017
– ident: e_1_2_8_101_1
– ident: e_1_2_8_131_1
  doi: 10.1002/adma.201701968
– ident: e_1_2_8_83_1
  doi: 10.3390/membranes5040752
– ident: e_1_2_8_1_1
  doi: 10.1038/s41427-019-0167-1
– ident: e_1_2_8_120_2
  doi: 10.3390/ijms21134689
– ident: e_1_2_8_36_2
  doi: 10.1002/ente.202000358
– ident: e_1_2_8_35_1
– ident: e_1_2_8_25_2
  doi: 10.1002/anie.202005603
– ident: e_1_2_8_48_1
  doi: 10.1021/je800678e
– ident: e_1_2_8_32_2
  doi: 10.1007/s11581-018-2644-x
– volume: 7
  year: 2020
  ident: e_1_2_8_19_2
  publication-title: Front. Mater.
– ident: e_1_2_8_95_1
– ident: e_1_2_8_123_1
  doi: 10.1016/j.jpowsour.2007.06.113
– ident: e_1_2_8_81_1
  doi: 10.1007/s10965-016-1043-0
– ident: e_1_2_8_98_1
– ident: e_1_2_8_69_1
  doi: 10.1021/jp501665g
– ident: e_1_2_8_82_1
  doi: 10.1007/s10854-018-0024-y
– ident: e_1_2_8_90_1
  doi: 10.1007/s10008-012-1733-4
– ident: e_1_2_8_134_1
– ident: e_1_2_8_14_1
– ident: e_1_2_8_117_1
– ident: e_1_2_8_113_1
  doi: 10.1149/2.0461507jes
– ident: e_1_2_8_22_2
  doi: 10.1016/j.gee.2016.04.006
– ident: e_1_2_8_119_2
  doi: 10.1038/s41598-019-44915-8
– ident: e_1_2_8_13_1
  doi: 10.1002/cey2.67
– ident: e_1_2_8_130_1
  doi: 10.1016/j.nanoen.2016.04.051
– ident: e_1_2_8_125_1
  doi: 10.3390/en13010031
– ident: e_1_2_8_2_1
  doi: 10.1016/j.joule.2020.03.002
– ident: e_1_2_8_10_2
  doi: 10.1016/j.jechem.2020.05.056
– ident: e_1_2_8_58_1
– ident: e_1_2_8_28_2
  doi: 10.1002/anie.201813223
– ident: e_1_2_8_46_1
  doi: 10.1002/anie.202108624
– ident: e_1_2_8_79_1
  doi: 10.1016/j.elecom.2015.09.011
– ident: e_1_2_8_94_1
– ident: e_1_2_8_137_1
  doi: 10.1038/s41560-020-0674-x
– ident: e_1_2_8_57_1
  doi: 10.1039/b210714g
– ident: e_1_2_8_18_2
  doi: 10.1002/adfm.202001263
– ident: e_1_2_8_71_2
  doi: 10.1149/2.0641906jes
– ident: e_1_2_8_88_1
  doi: 10.1016/j.jpowsour.2006.10.042
– ident: e_1_2_8_75_1
– ident: e_1_2_8_121_1
  doi: 10.1103/PhysRevB.93.045132
– ident: e_1_2_8_61_1
– ident: e_1_2_8_66_2
  doi: 10.1016/j.jiec.2016.10.005
– ident: e_1_2_8_64_1
– ident: e_1_2_8_84_1
  doi: 10.1016/j.electacta.2015.07.132
– ident: e_1_2_8_45_1
  doi: 10.3390/ijms21093113
– ident: e_1_2_8_91_1
  doi: 10.1149/2.F04122if
– ident: e_1_2_8_124_1
  doi: 10.1016/j.pnsc.2013.04.005
– ident: e_1_2_8_102_1
– ident: e_1_2_8_34_1
  doi: 10.1021/acsami.5b10024
– ident: e_1_2_8_133_1
  doi: 10.1002/chem.200500883
– start-page: 100738
  year: 2021
  ident: e_1_2_8_12_1
  publication-title: Mater. Today
– ident: e_1_2_8_116_1
  doi: 10.1038/s41598-019-51692-x
– ident: e_1_2_8_100_1
– ident: e_1_2_8_42_1
  doi: 10.1016/j.jpowsour.2013.09.082
– ident: e_1_2_8_122_1
  doi: 10.3390/cryst7070221
– ident: e_1_2_8_17_1
– ident: e_1_2_8_26_2
  doi: 10.1016/j.ensm.2020.04.030
– ident: e_1_2_8_92_1
  doi: 10.1016/j.nanoen.2018.10.035
– ident: e_1_2_8_74_1
  doi: 10.1016/j.nanoen.2018.12.086
– ident: e_1_2_8_96_1
– ident: e_1_2_8_77_2
  doi: 10.1016/j.molliq.2021.117606
– ident: e_1_2_8_21_1
– ident: e_1_2_8_31_2
  doi: 10.1039/C9TA13068C
– ident: e_1_2_8_73_1
  doi: 10.1016/j.jcis.2009.10.034
– ident: e_1_2_8_128_2
  doi: 10.1039/C8CC02250J
– ident: e_1_2_8_114_1
  doi: 10.1016/j.electacta.2014.09.137
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.201908121
– ident: e_1_2_8_136_2
  doi: 10.1039/D0CC05344A
– ident: e_1_2_8_65_2
  doi: 10.1039/C9SE00744J
– ident: e_1_2_8_127_2
  doi: 10.1021/acsenergylett.8b00565
– ident: e_1_2_8_15_2
  doi: 10.1021/acsami.1c06131
– ident: e_1_2_8_27_1
– ident: e_1_2_8_44_1
  doi: 10.1002/adma.201900668
– ident: e_1_2_8_47_1
  doi: 10.1149/1945-7111/abe9cb
– ident: e_1_2_8_62_2
  doi: 10.1021/jp311886h
– ident: e_1_2_8_30_2
  doi: 10.1002/aenm.201800589
– ident: e_1_2_8_132_1
  doi: 10.1002/aenm.202000982
– ident: e_1_2_8_24_1
– ident: e_1_2_8_67_2
  doi: 10.1016/j.electacta.2013.03.027
– ident: e_1_2_8_16_2
  doi: 10.1021/acsenergylett.0c02371
– ident: e_1_2_8_8_1
– ident: e_1_2_8_118_2
  doi: 10.1080/09506608.2019.1653520
SSID ssj0002140733
Score 2.4177876
SecondaryResourceType review_article
Snippet Owing to their high energy density and low cost, zinc‐ion batteries (ZIBs) are gaining much in popularity. However, in practice, issues with hydrogen...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms costs
deep eutectic solvent
ionic liquid
non-proton donor electrolyte
organic
Title Stability Enhancement of Zinc‐Ion Batteries Using Non‐Aqueous Electrolytes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbatt.202100361
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd-GCQIAYX_IBiUPl4TiOkx4DFA3EKgSdmLhETmKrGVtSdc2hO3HkyN_IX8JznDgZKmJwiRx_yfL7yX7P_r1nhJ5NQxppmksy9T1JuBSCTKNIkCBXHpQwGSnjjXw0F4fH_N1JcDIafR-wlupNepBd7vQr-R-pQh7I1XjJ_oNkXaeQAWmQL3xBwvC9loxBU2y4rdvJrFwa8XU3-18KGGVHY3gLArZhNMEqnliOwBw0vq48hq3BEGFn9kWcs-2m5RV2d72urYHJRb1S60yu-ksgWbmuCnuc-rk5kN_WTprVUp5bLMVLSEziy_Oi5wIVddNIFa6fj72D2odqXa7W0pAGLuqvlgx-Ku2b391xBVi6jhxoVzVQsQQRzDoZH6gdee2yHAzQF-xc7G3w2BQmAex8MF1hM_b6ba27yv9tt3McRBuvmSWmfeLa30B7DAwONkZ78euj95_ceR0DSzT0DWHBjbaLAUrZi6uDuKLjDG2eRmlZ3Ea3WmsDxxY6d9BIlXfR3MEGD2CDK40NbH5--wGAwU7ouAEMBsBASQsVPITKPXT8ZrZ4dUjaZzVIBsqlR7TnKZpxqrn0NOdC-uYuOARFOBdRFjFNo1wxHQnuaU2p8iRlCvIlWAJyKrR_H43LqlQPEDYKY8CEn4c55zwLUqlSP_Q512FO00ztI9JNRJK1MefN0ydnye7Z30fPXf2Vjbbyx5qsmde_VEtexouF-3t47e4foZs9eB-j8WZdqyegfW7Spy0wfgFHL380
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+Enhancement+of+Zinc%E2%80%90Ion+Batteries+Using+Non%E2%80%90Aqueous+Electrolytes&rft.jtitle=Batteries+%26+supercaps&rft.au=Kao%E2%80%90ian%2C+Wathanyu&rft.au=Mohamad%2C+Ahmad+Azmin&rft.au=Liu%2C+Wei%E2%80%90Ren&rft.au=Pornprasertsuk%2C+Rojana&rft.date=2022-05-01&rft.issn=2566-6223&rft.eissn=2566-6223&rft.volume=5&rft.issue=5&rft_id=info:doi/10.1002%2Fbatt.202100361&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_batt_202100361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2566-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2566-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2566-6223&client=summon