Stability Enhancement of Zinc‐Ion Batteries Using Non‐Aqueous Electrolytes
Owing to their high energy density and low cost, zinc‐ion batteries (ZIBs) are gaining much in popularity. However, in practice, issues with hydrogen evolution, zinc dendrite development, corrosion, and passivation persist. Such drawbacks prove difficult to eradicate completely. To address these dif...
Saved in:
Published in | Batteries & supercaps Vol. 5; no. 5 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Owing to their high energy density and low cost, zinc‐ion batteries (ZIBs) are gaining much in popularity. However, in practice, issues with hydrogen evolution, zinc dendrite development, corrosion, and passivation persist. Such drawbacks prove difficult to eradicate completely. To address these difficulties, many techniques have been proposed including inhibitor addition, artificial SEI, and Zn electrode modification. As a result, some researchers believe that using non‐proton donor electrolytes or nonaqueous electrolytes can fundamentally solve these problems. Herein, the efforts to apply nonaqueous electrolytes such as organic electrolytes, room‐temperature ionic liquids, and deep‐eutectic solvents to ZIBs are described. An understanding of the mechanisms of nonaqueous ZIBs (NZIBs) regarding zinc plating/stripping and intercalation/deintercalation is also highlighted. Importantly, research gaps are identified in order to pave the way for future study. In addition, an attempt is made to offer a viewpoint on critical topics as well as a benchmarking and enhancement of NZIB technologies.
Non‐aqueous electrolyte for ZIB: Zinc‐ion batteries (ZIBs) are gaining much in popularity. However, in practice, issues with hydrogen evolution, zinc dendrite development, corrosion, and passivation persist. Herein, the efforts to apply non‐aqueous electrolytes in ZIBs are systematically reviewed. Furthermore, understanding non‐aqueous ZIBs (NZIBs) mechanisms regarding zinc plating/stripping and intercalation/deintercalation is also highlighted. Importantly, research gaps are identified to pave the way for future studies. |
---|---|
AbstractList | Owing to their high energy density and low cost, zinc‐ion batteries (ZIBs) are gaining much in popularity. However, in practice, issues with hydrogen evolution, zinc dendrite development, corrosion, and passivation persist. Such drawbacks prove difficult to eradicate completely. To address these difficulties, many techniques have been proposed including inhibitor addition, artificial SEI, and Zn electrode modification. As a result, some researchers believe that using non‐proton donor electrolytes or nonaqueous electrolytes can fundamentally solve these problems. Herein, the efforts to apply nonaqueous electrolytes such as organic electrolytes, room‐temperature ionic liquids, and deep‐eutectic solvents to ZIBs are described. An understanding of the mechanisms of nonaqueous ZIBs (NZIBs) regarding zinc plating/stripping and intercalation/deintercalation is also highlighted. Importantly, research gaps are identified in order to pave the way for future study. In addition, an attempt is made to offer a viewpoint on critical topics as well as a benchmarking and enhancement of NZIB technologies.
Non‐aqueous electrolyte for ZIB: Zinc‐ion batteries (ZIBs) are gaining much in popularity. However, in practice, issues with hydrogen evolution, zinc dendrite development, corrosion, and passivation persist. Herein, the efforts to apply non‐aqueous electrolytes in ZIBs are systematically reviewed. Furthermore, understanding non‐aqueous ZIBs (NZIBs) mechanisms regarding zinc plating/stripping and intercalation/deintercalation is also highlighted. Importantly, research gaps are identified to pave the way for future studies. Owing to their high energy density and low cost, zinc‐ion batteries (ZIBs) are gaining much in popularity. However, in practice, issues with hydrogen evolution, zinc dendrite development, corrosion, and passivation persist. Such drawbacks prove difficult to eradicate completely. To address these difficulties, many techniques have been proposed including inhibitor addition, artificial SEI, and Zn electrode modification. As a result, some researchers believe that using non‐proton donor electrolytes or nonaqueous electrolytes can fundamentally solve these problems. Herein, the efforts to apply nonaqueous electrolytes such as organic electrolytes, room‐temperature ionic liquids, and deep‐eutectic solvents to ZIBs are described. An understanding of the mechanisms of nonaqueous ZIBs (NZIBs) regarding zinc plating/stripping and intercalation/deintercalation is also highlighted. Importantly, research gaps are identified in order to pave the way for future study. In addition, an attempt is made to offer a viewpoint on critical topics as well as a benchmarking and enhancement of NZIB technologies. |
Author | Kheawhom, Soorathep Kao‐ian, Wathanyu Pornprasertsuk, Rojana Siwamogsatham, Siwaruk Liu, Wei‐Ren Mohamad, Ahmad Azmin |
Author_xml | – sequence: 1 givenname: Wathanyu orcidid: 0000-0001-8261-5989 surname: Kao‐ian fullname: Kao‐ian, Wathanyu organization: Chulalongkorn University – sequence: 2 givenname: Ahmad Azmin orcidid: 0000-0001-5525-7100 surname: Mohamad fullname: Mohamad, Ahmad Azmin organization: Universiti Sains Malaysia – sequence: 3 givenname: Wei‐Ren orcidid: 0000-0003-0468-895X surname: Liu fullname: Liu, Wei‐Ren organization: Chung Yuan Christian University – sequence: 4 givenname: Rojana orcidid: 0000-0002-9792-1521 surname: Pornprasertsuk fullname: Pornprasertsuk, Rojana organization: Nagaoka University of Technology – sequence: 5 givenname: Siwaruk surname: Siwamogsatham fullname: Siwamogsatham, Siwaruk organization: National Science and Technology Development Agency – sequence: 6 givenname: Soorathep orcidid: 0000-0002-3129-2750 surname: Kheawhom fullname: Kheawhom, Soorathep email: soorathep.k@chula.ac.th organization: Chulalongkorn University |
BookMark | eNqFkMtOAjEUhhuDiYhsXfcFZuxtyrAEgkpCcCFs3ExKOdWaodW2xMzOR_AZfRKHYNSYGFfn-v2L7xR1nHeA0DklOSWEXaxVSjkjrB24pEeoywopM8kY7_zoT1A_xkfSAlSQAeddtLhNam1rmxo8dQ_KadiCS9gbfGedfn99m3mHx204BAsRr6J193jhXXsZPe_A7yKe1qBT8HWTIJ6hY6PqCP3P2kOry-lycp3Nb65mk9E807woaGYoBaIFMUJRI4RUnJeMDwrJNrLUJTOk3AAzpRTUGEKAKsKg3StOiRpKw3tIHHJ18DEGMJW2SSXrXQrK1hUl1V5LtddSfWlpsfwX9hTsVoXmb2B4AF5sDc0_39V4tFx-sx8GkHmB |
CitedBy_id | crossref_primary_10_1016_j_electacta_2023_143122 crossref_primary_10_1016_j_est_2024_111822 crossref_primary_10_1002_ange_202206717 crossref_primary_10_1039_D3YA00638G crossref_primary_10_1016_j_aej_2023_12_042 crossref_primary_10_1007_s12209_023_00373_y crossref_primary_10_1021_acsenergylett_4c00628 crossref_primary_10_1016_j_mset_2022_12_011 crossref_primary_10_1021_acsami_4c08820 crossref_primary_10_1002_jccs_202300357 crossref_primary_10_1002_adfm_202312332 crossref_primary_10_1002_cssc_202402101 crossref_primary_10_1039_D3TA05143A crossref_primary_10_1016_j_electacta_2024_145059 crossref_primary_10_1021_acsaem_4c01012 crossref_primary_10_3390_ma17133327 crossref_primary_10_1016_j_cej_2023_141334 crossref_primary_10_1002_advs_202205874 crossref_primary_10_1002_advs_202410318 crossref_primary_10_1002_sstr_202200316 crossref_primary_10_1016_j_electacta_2023_142686 crossref_primary_10_1002_eem2_12728 crossref_primary_10_1002_adma_202206812 crossref_primary_10_1016_j_cej_2025_161327 crossref_primary_10_1002_aenm_202200255 crossref_primary_10_1016_j_cej_2025_160158 crossref_primary_10_3390_sci6030050 crossref_primary_10_1021_acs_energyfuels_2c03997 crossref_primary_10_1016_j_mset_2023_04_003 crossref_primary_10_1039_D3TA01014G crossref_primary_10_1002_smll_202200550 crossref_primary_10_1016_j_electacta_2022_141365 crossref_primary_10_1021_acsenergylett_4c00967 crossref_primary_10_1016_j_electacta_2025_146061 crossref_primary_10_1021_acsami_4c07239 crossref_primary_10_1007_s40820_023_01304_1 crossref_primary_10_1002_anie_202206717 crossref_primary_10_1002_cssc_202202330 crossref_primary_10_1007_s12598_023_02441_7 crossref_primary_10_1007_s40820_023_01050_4 crossref_primary_10_1039_D3NR00898C crossref_primary_10_55713_jmmm_v34i3_2084 crossref_primary_10_1021_acsami_3c06490 crossref_primary_10_1016_j_est_2024_115258 crossref_primary_10_1088_2752_5724_acef41 crossref_primary_10_1016_j_cej_2022_137796 crossref_primary_10_1149_1945_7111_aca363 crossref_primary_10_1016_j_geits_2023_100126 crossref_primary_10_1021_acs_jpcc_4c03418 crossref_primary_10_1016_j_jallcom_2025_178521 crossref_primary_10_1038_s41467_023_39877_5 |
Cites_doi | 10.1016/j.cogsc.2020.100426 10.1021/acs.chemmater.7b00852 10.1021/cr300162p 10.1088/1742-6596/1052/1/012085 10.1149/1.1566017 10.1021/acs.jpcb.0c04784 10.3390/polym12122812 10.1021/acsnano.0c09205 10.1002/celc.201500444 10.1007/s40820-019-0300-2 10.1039/D0EE02620D 10.1021/acsami.9b10399 10.1016/j.mtadv.2021.100149 10.1002/celc.202100003 10.1016/j.jpcs.2014.02.003 10.1021/je2006049 10.1016/j.nanoen.2019.03.034 10.1016/j.electacta.2020.136937 10.1016/j.jpowsour.2016.10.083 10.1021/ef5028873 10.1016/j.elecom.2012.02.034 10.1021/acs.chemrev.9b00628 10.1002/aenm.201600826 10.1038/s41467-020-16259-9 10.1002/app.47654 10.1039/C8EE00378E 10.1002/eem2.12077 10.1016/j.electacta.2011.04.082 10.1016/j.electacta.2015.11.030 10.1039/D0RA03358H 10.1038/srep29225 10.1088/1674-4926/41/9/091704 10.1021/acs.chemmater.7b03340 10.1016/j.elecom.2005.09.011 10.1002/aenm.201601920 10.1002/anie.201106307 10.1016/j.mser.2018.10.002 10.1038/s41467-019-13436-3 10.1016/j.mattod.2014.10.040 10.1016/j.coelec.2021.100769 10.1002/celc.201402177 10.3389/fenrg.2020.616665 10.1039/c0cp02244f 10.1016/j.jelechem.2017.08.019 10.1002/qua.26014 10.1016/j.ensm.2021.08.017 10.1002/adma.201701968 10.3390/membranes5040752 10.1038/s41427-019-0167-1 10.3390/ijms21134689 10.1002/ente.202000358 10.1002/anie.202005603 10.1021/je800678e 10.1007/s11581-018-2644-x 10.1016/j.jpowsour.2007.06.113 10.1007/s10965-016-1043-0 10.1021/jp501665g 10.1007/s10854-018-0024-y 10.1007/s10008-012-1733-4 10.1149/2.0461507jes 10.1016/j.gee.2016.04.006 10.1038/s41598-019-44915-8 10.1002/cey2.67 10.1016/j.nanoen.2016.04.051 10.3390/en13010031 10.1016/j.joule.2020.03.002 10.1016/j.jechem.2020.05.056 10.1002/anie.201813223 10.1002/anie.202108624 10.1016/j.elecom.2015.09.011 10.1038/s41560-020-0674-x 10.1039/b210714g 10.1002/adfm.202001263 10.1149/2.0641906jes 10.1016/j.jpowsour.2006.10.042 10.1103/PhysRevB.93.045132 10.1016/j.jiec.2016.10.005 10.1016/j.electacta.2015.07.132 10.3390/ijms21093113 10.1149/2.F04122if 10.1016/j.pnsc.2013.04.005 10.1021/acsami.5b10024 10.1002/chem.200500883 10.1038/s41598-019-51692-x 10.1016/j.jpowsour.2013.09.082 10.3390/cryst7070221 10.1016/j.ensm.2020.04.030 10.1016/j.nanoen.2018.10.035 10.1016/j.nanoen.2018.12.086 10.1016/j.molliq.2021.117606 10.1039/C9TA13068C 10.1016/j.jcis.2009.10.034 10.1039/C8CC02250J 10.1016/j.electacta.2014.09.137 10.1002/adma.201908121 10.1039/D0CC05344A 10.1039/C9SE00744J 10.1021/acsenergylett.8b00565 10.1021/acsami.1c06131 10.1002/adma.201900668 10.1149/1945-7111/abe9cb 10.1021/jp311886h 10.1002/aenm.201800589 10.1002/aenm.202000982 10.1016/j.electacta.2013.03.027 10.1021/acsenergylett.0c02371 10.1080/09506608.2019.1653520 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/batt.202100361 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2566-6223 |
EndPage | n/a |
ExternalDocumentID | 10_1002_batt_202100361 BATT202100361 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan funderid: MOST 109-2923-E-006-006; 110-2622-M-033-001; 109-2622-E-033-010; 110-2923-E-006-011; 110-3116-F-011-002; 108-E-033-MY3 – fundername: National Science and Technology Development Agency funderid: FDA-CO-2563-11897-TH; B16F640166 – fundername: NIPPON SHEET GLASS 2021 funderid: 304.PBAHAN.6050464.N120 |
GroupedDBID | 0R~ 1OC 33P AAHHS AAHQN AAMNL AANLZ AAYCA AAZKR ABCUV ACCFJ ACCZN ACGFS ACPOU ACXQS ADBBV ADKYN ADXAS ADZMN ADZOD AEEZP AEIGN AEQDE AEUYR AFFPM AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALVPJ AMYDB ARCSS BFHJK DCZOG EBS EJD HGLYW LATKE LEEKS LUTES LYRES MEWTI O9- P2W ROL SUPJJ WXSBR WYJ ZZTAW AAYXX ABJNI ADMLS AEYWJ AGHNM AGYGG CITATION |
ID | FETCH-LOGICAL-c3551-f11e0c40f4a1f446a338237562d68c82f08de2f8641ff00e1a02ec82a310a96f3 |
ISSN | 2566-6223 |
IngestDate | Tue Jul 01 02:02:51 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 Wed Jan 22 16:24:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3551-f11e0c40f4a1f446a338237562d68c82f08de2f8641ff00e1a02ec82a310a96f3 |
ORCID | 0000-0001-5525-7100 0000-0002-3129-2750 0000-0003-0468-895X 0000-0002-9792-1521 0000-0001-8261-5989 |
PageCount | 31 |
ParticipantIDs | crossref_citationtrail_10_1002_batt_202100361 crossref_primary_10_1002_batt_202100361 wiley_primary_10_1002_batt_202100361_BATT202100361 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationTitle | Batteries & supercaps |
PublicationYear | 2022 |
References | 2017; 7 2021; 168 2019; 11 2020; 120 2019; 55 2019; 10 2013; 23 2019; 57 2021; 28 2019; 58 2017; 45 2010; 342 2003; 150 2020; 59 2020; 13 2012; 18 2011; 13 2020; 12 2011; 56 2020; 56 2012; 16 2020; 11 2020; 124 2020; 10 2021; 30 2019; 166 2012; 51 2020; 8 2014; 1 2017; 801 2020; 7 2014; 248 2018; 8 2020; 5 2020; 4 2019; 60 2018; 3 2020; 3 2020; 2 2013; 97 2007; 174 2019; 25 2013; 117 2015; 176 2019; 119 2012; 21 2016; 197 2014; 118 2015; 162 2021; 8 2018; 29 2021; 6 2019; 9 2021; 42 2015; 5 2015; 18 2019; 31 2006; 12 2021; 343 2020; 41 2019; 2 2007; 165 2018; 1052 2017; 29 2016; 93 2003 2020; 32 2008; 53 2014; 114 2017; 337 2021; 13 2016; 6 2021; 15 2021; 54 2016; 1 2021; 11 2016; 3 2015; 29 2015; 60 2020; 30 2021 2020; 358 2019; 135 2005; 7 2019; 136 2020; 21 2020; 65 2018; 11 2021; 60 2018; 54 2016; 8 2014; 147 2016; 25 2016; 23 2020; 29 2014; 75 e_1_2_8_49_1 e_1_2_8_26_2 e_1_2_8_68_2 e_1_2_8_9_2 e_1_2_8_132_1 e_1_2_8_5_1 e_1_2_8_117_1 e_1_2_8_41_2 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_22_2 e_1_2_8_113_1 e_1_2_8_136_2 e_1_2_8_1_1 e_1_2_8_83_1 e_1_2_8_60_2 e_1_2_8_109_2 e_1_2_8_57_1 e_1_2_8_15_2 Lei L. (e_1_2_8_19_2) 2020; 7 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_120_2 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_30_2 e_1_2_8_76_2 e_1_2_8_34_1 e_1_2_8_11_2 e_1_2_8_53_2 e_1_2_8_128_2 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_72_2 e_1_2_8_29_2 e_1_2_8_25_2 e_1_2_8_67_2 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_2 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_63_2 e_1_2_8_118_2 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_137_1 e_1_2_8_40_2 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_2 e_1_2_8_14_1 e_1_2_8_37_2 e_1_2_8_56_2 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_52_2 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_102_1 e_1_2_8_71_2 e_1_2_8_125_1 e_1_2_8_28_2 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_119_2 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_130_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_89_1 e_1_2_8_66_2 e_1_2_8_85_1 e_1_2_8_62_2 e_1_2_8_111_2 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_59_2 e_1_2_8_36_2 Verma V. (e_1_2_8_38_2) 2019; 2 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_97_1 e_1_2_8_78_1 e_1_2_8_55_2 e_1_2_8_107_1 e_1_2_8_32_2 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_93_1 e_1_2_8_23_2 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 Kao-ian W. (e_1_2_8_12_1) 2021 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_8_1 e_1_2_8_65_2 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_135_2 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_2 e_1_2_8_77_2 e_1_2_8_127_2 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 801 start-page: 545 year: 2017 publication-title: J. Electroanal. Chem. – volume: 29 start-page: 2616 year: 2015 publication-title: Energy Fuels – volume: 29 start-page: 9351 year: 2017 publication-title: Chem. Mater. – volume: 5 start-page: 752 year: 2015 end-page: 771 publication-title: Membranes – volume: 13 start-page: 4625 year: 2020 publication-title: Energy Environ. Sci. – volume: 45 start-page: 375 year: 2017 publication-title: J. Ind. Eng. Chem. – volume: 56 start-page: 6071 year: 2011 publication-title: Electrochim. Acta – volume: 53 start-page: 2884 year: 2008 publication-title: J. Chem. Eng. Data – volume: 3 start-page: 598 year: 2016 end-page: 604 publication-title: ChemElectroChem – volume: 13 start-page: 31 year: 2020 publication-title: Energies – year: 2021 publication-title: Mater. Today – volume: 8 year: 2021 publication-title: Front. Energy Res. – volume: 75 start-page: 746 year: 2014 publication-title: J. Phys. Chem. Solids – volume: 165 start-page: 500 year: 2007 publication-title: J. Power Sources – volume: 25 start-page: 211 year: 2016 end-page: 217 publication-title: Nano Energy – volume: 10 start-page: 5374 year: 2019 publication-title: Nat. Commun. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 101 year: 2020 publication-title: Sustain. Energy Fuels – volume: 2 start-page: 8667 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 15107 year: 2019 publication-title: Sci. Rep. – volume: 65 start-page: 356 year: 2020 publication-title: Int. Mater. Rev. – volume: 197 start-page: 344 year: 2016 publication-title: Electrochim. Acta – volume: 120 start-page: 7795 year: 2020 end-page: 7866 publication-title: Chem. Rev. – volume: 10 start-page: 21071 year: 2020 end-page: 21081 publication-title: RSC Adv. – volume: 174 start-page: 695 year: 2007 publication-title: J. Power Sources – volume: 7 year: 2020 publication-title: Front. Mater. – volume: 118 start-page: 4895 year: 2014 publication-title: J. Phys. Chem. B – volume: 7 start-page: 221 year: 2017 publication-title: Crystals – volume: 117 start-page: 2662 year: 2013 publication-title: J. Phys. Chem. C – volume: 56 start-page: 4672 year: 2011 publication-title: J. Chem. Eng. Data – volume: 60 start-page: 21025 year: 2021 publication-title: Angew. Chem. Int. Ed. – volume: 21 start-page: 4689 year: 2020 publication-title: Int. J. Mol. Sci. – volume: 168 year: 2021 publication-title: J. Electrochem. Soc. – volume: 42 start-page: 715 year: 2021 publication-title: Energy Storage Mater. – volume: 13 start-page: 10224 year: 2011 publication-title: Phys. Chem. Chem. Phys. – volume: 358 year: 2020 publication-title: Electrochim. Acta – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 119 year: 2019 publication-title: Int. J. Quantum Chem. – volume: 23 start-page: 1 year: 2016 publication-title: J. Polym. Res. – volume: 12 start-page: 4 year: 2020 publication-title: NPG Asia Mater. – volume: 11 start-page: 2499 year: 2020 publication-title: Nat. Commun. – volume: 6 start-page: 29225 year: 2016 publication-title: Sci. Rep. – volume: 6 start-page: 395 year: 2021 publication-title: ACS Energy Lett. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 8 year: 2020 publication-title: Energy Technol. – volume: 11 start-page: 69 year: 2019 publication-title: Nano-Micro Lett. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 11 year: 2021 publication-title: Mater. Today – volume: 21 start-page: 45 year: 2012 publication-title: Electrochem. Soc. Interface – volume: 16 start-page: 3105 year: 2012 publication-title: J. Solid State Electrochem. – volume: 60 start-page: 190 year: 2015 publication-title: Electrochem. Commun. – volume: 21 start-page: 3113 year: 2020 publication-title: Int. J. Mol. Sci. – volume: 18 start-page: 119 year: 2012 publication-title: Electrochem. Commun. – volume: 29 start-page: 19632 year: 2018 publication-title: J. Mater. Sci. Mater. Electron. – volume: 124 start-page: 10739 year: 2020 publication-title: J. Phys. Chem. B – volume: 58 start-page: 2760 year: 2019 publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 3021 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 60 start-page: 171 year: 2019 publication-title: Nano Energy – volume: 12 start-page: 2812 year: 2020 publication-title: Polymer – volume: 342 start-page: 505 year: 2010 publication-title: J. Colloid Interface Sci. – volume: 97 start-page: 289 year: 2013 publication-title: Electrochim. Acta – volume: 8 start-page: 1289 year: 2021 publication-title: ChemElectroChem – volume: 8 start-page: 3252 year: 2020 publication-title: J. Mater. Chem. A – volume: 135 start-page: 58 year: 2019 end-page: 84 publication-title: Mater. Sci. Eng. R – volume: 59 start-page: 14577 year: 2020 publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 540 year: 2020 publication-title: Carbon Energy – volume: 1 start-page: 18 year: 2016 publication-title: Green Energy & Environ. – volume: 337 start-page: 204 year: 2017 publication-title: J. Power Sources – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 93 year: 2016 publication-title: Phys. Rev. B – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 11 start-page: 881 year: 2018 publication-title: Energy Environ. Sci. – volume: 28 year: 2021 publication-title: Curr. Opin. Green Sustain. Chem. – volume: 18 start-page: 252 year: 2015 publication-title: Mater. Today – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 54 start-page: 194 year: 2021 publication-title: J. Energy Chem. – volume: 150 start-page: A608 year: 2003 publication-title: J. Electrochem. Soc. – volume: 1052 year: 2018 publication-title: J. Phys. Conf. Ser. – volume: 166 start-page: A1063 year: 2019 publication-title: J. Electrochem. Soc. – volume: 55 start-page: 93 year: 2019 publication-title: Nano Energy – volume: 248 start-page: 1099 year: 2014 publication-title: J. Power Sources – volume: 51 start-page: 933 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 771 year: 2020 publication-title: Joule – volume: 147 start-page: 513 year: 2014 publication-title: Electrochim. Acta – volume: 54 start-page: 4457 year: 2018 publication-title: Chem. Commun. – volume: 41 year: 2020 publication-title: J. Semiconductors – volume: 114 start-page: 11060 year: 2014 end-page: 11082 publication-title: Chem. Rev. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 29 start-page: 246 year: 2020 publication-title: Energy Storage Mater. – volume: 9 start-page: 8441 year: 2019 publication-title: Sci. Rep. – volume: 57 start-page: 625 year: 2019 publication-title: Nano Energy – volume: 11 start-page: 32978 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 2971 year: 2021 publication-title: ACS Nano – volume: 29 start-page: 4874 year: 2017 publication-title: Chem. Mater. – volume: 12 start-page: 3082 year: 2006 publication-title: Chem. Eur. J. – volume: 136 start-page: 47654 year: 2019 publication-title: J. Appl. Polym. Sci. – volume: 176 start-page: 1447 year: 2015 publication-title: Electrochim. Acta – volume: 13 start-page: 32930 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 1366 year: 2018 publication-title: ACS Energy Lett. – volume: 3 start-page: 516 year: 2020 publication-title: Energy Environ. Mater. – volume: 5 start-page: 743 year: 2020 publication-title: Nat. Energy – start-page: 70 year: 2003 publication-title: Chem. Commun. – volume: 56 start-page: 11859 year: 2020 publication-title: Chem. Commun. – volume: 162 start-page: A1227 year: 2015 publication-title: J. Electrochem. Soc. – volume: 23 start-page: 256 year: 2013 publication-title: Prog. Nat. Sci. – volume: 30 year: 2021 publication-title: Curr. Opin. Electrochem. – volume: 343 year: 2021 publication-title: J. Mol. Liq. – volume: 7 start-page: 1309 year: 2005 publication-title: Electrochem. Commun. – volume: 1 start-page: 1688 year: 2014 publication-title: ChemElectroChem – volume: 25 start-page: 1303 year: 2019 end-page: 1313 publication-title: Ionics – ident: e_1_2_8_55_2 doi: 10.1016/j.cogsc.2020.100426 – ident: e_1_2_8_70_1 – ident: e_1_2_8_39_2 doi: 10.1021/acs.chemmater.7b00852 – ident: e_1_2_8_59_2 doi: 10.1021/cr300162p – ident: e_1_2_8_80_1 doi: 10.1088/1742-6596/1052/1/012085 – ident: e_1_2_8_89_1 doi: 10.1149/1.1566017 – ident: e_1_2_8_110_2 doi: 10.1021/acs.jpcb.0c04784 – ident: e_1_2_8_54_1 – ident: e_1_2_8_76_2 doi: 10.3390/polym12122812 – ident: e_1_2_8_9_2 doi: 10.1021/acsnano.0c09205 – ident: e_1_2_8_53_2 doi: 10.1002/celc.201500444 – ident: e_1_2_8_6_1 doi: 10.1007/s40820-019-0300-2 – ident: e_1_2_8_5_1 doi: 10.1039/D0EE02620D – ident: e_1_2_8_33_2 doi: 10.1021/acsami.9b10399 – ident: e_1_2_8_7_1 doi: 10.1016/j.mtadv.2021.100149 – ident: e_1_2_8_52_2 doi: 10.1002/celc.202100003 – ident: e_1_2_8_126_1 – ident: e_1_2_8_86_1 doi: 10.1016/j.jpcs.2014.02.003 – ident: e_1_2_8_68_2 doi: 10.1021/je2006049 – ident: e_1_2_8_105_1 doi: 10.1016/j.nanoen.2019.03.034 – ident: e_1_2_8_93_1 doi: 10.1016/j.electacta.2020.136937 – ident: e_1_2_8_40_2 doi: 10.1016/j.jpowsour.2016.10.083 – ident: e_1_2_8_56_2 doi: 10.1021/ef5028873 – ident: e_1_2_8_63_2 doi: 10.1016/j.elecom.2012.02.034 – ident: e_1_2_8_97_1 – ident: e_1_2_8_11_2 doi: 10.1021/acs.chemrev.9b00628 – ident: e_1_2_8_41_2 doi: 10.1002/aenm.201600826 – ident: e_1_2_8_103_1 doi: 10.1038/s41467-020-16259-9 – ident: e_1_2_8_87_1 doi: 10.1002/app.47654 – ident: e_1_2_8_108_1 – ident: e_1_2_8_37_2 doi: 10.1039/C8EE00378E – ident: e_1_2_8_99_1 – ident: e_1_2_8_104_1 doi: 10.1002/eem2.12077 – ident: e_1_2_8_107_1 doi: 10.1016/j.electacta.2011.04.082 – ident: e_1_2_8_111_2 doi: 10.1016/j.electacta.2015.11.030 – volume: 2 start-page: 8667 year: 2019 ident: e_1_2_8_38_2 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_8_49_1 doi: 10.1039/D0RA03358H – ident: e_1_2_8_72_2 doi: 10.1038/srep29225 – ident: e_1_2_8_135_2 doi: 10.1088/1674-4926/41/9/091704 – ident: e_1_2_8_29_2 doi: 10.1021/acs.chemmater.7b03340 – ident: e_1_2_8_85_1 doi: 10.1016/j.elecom.2005.09.011 – ident: e_1_2_8_129_1 doi: 10.1002/aenm.201601920 – ident: e_1_2_8_4_1 doi: 10.1002/anie.201106307 – ident: e_1_2_8_3_1 doi: 10.1016/j.mser.2018.10.002 – ident: e_1_2_8_60_2 doi: 10.1038/s41467-019-13436-3 – ident: e_1_2_8_23_2 doi: 10.1016/j.mattod.2014.10.040 – ident: e_1_2_8_115_1 doi: 10.1016/j.coelec.2021.100769 – ident: e_1_2_8_50_1 doi: 10.1002/celc.201402177 – ident: e_1_2_8_78_1 doi: 10.3389/fenrg.2020.616665 – ident: e_1_2_8_109_2 doi: 10.1039/c0cp02244f – ident: e_1_2_8_112_1 doi: 10.1016/j.jelechem.2017.08.019 – ident: e_1_2_8_106_1 doi: 10.1002/qua.26014 – ident: e_1_2_8_51_1 – ident: e_1_2_8_43_1 doi: 10.1016/j.ensm.2021.08.017 – ident: e_1_2_8_101_1 – ident: e_1_2_8_131_1 doi: 10.1002/adma.201701968 – ident: e_1_2_8_83_1 doi: 10.3390/membranes5040752 – ident: e_1_2_8_1_1 doi: 10.1038/s41427-019-0167-1 – ident: e_1_2_8_120_2 doi: 10.3390/ijms21134689 – ident: e_1_2_8_36_2 doi: 10.1002/ente.202000358 – ident: e_1_2_8_35_1 – ident: e_1_2_8_25_2 doi: 10.1002/anie.202005603 – ident: e_1_2_8_48_1 doi: 10.1021/je800678e – ident: e_1_2_8_32_2 doi: 10.1007/s11581-018-2644-x – volume: 7 year: 2020 ident: e_1_2_8_19_2 publication-title: Front. Mater. – ident: e_1_2_8_95_1 – ident: e_1_2_8_123_1 doi: 10.1016/j.jpowsour.2007.06.113 – ident: e_1_2_8_81_1 doi: 10.1007/s10965-016-1043-0 – ident: e_1_2_8_98_1 – ident: e_1_2_8_69_1 doi: 10.1021/jp501665g – ident: e_1_2_8_82_1 doi: 10.1007/s10854-018-0024-y – ident: e_1_2_8_90_1 doi: 10.1007/s10008-012-1733-4 – ident: e_1_2_8_134_1 – ident: e_1_2_8_14_1 – ident: e_1_2_8_117_1 – ident: e_1_2_8_113_1 doi: 10.1149/2.0461507jes – ident: e_1_2_8_22_2 doi: 10.1016/j.gee.2016.04.006 – ident: e_1_2_8_119_2 doi: 10.1038/s41598-019-44915-8 – ident: e_1_2_8_13_1 doi: 10.1002/cey2.67 – ident: e_1_2_8_130_1 doi: 10.1016/j.nanoen.2016.04.051 – ident: e_1_2_8_125_1 doi: 10.3390/en13010031 – ident: e_1_2_8_2_1 doi: 10.1016/j.joule.2020.03.002 – ident: e_1_2_8_10_2 doi: 10.1016/j.jechem.2020.05.056 – ident: e_1_2_8_58_1 – ident: e_1_2_8_28_2 doi: 10.1002/anie.201813223 – ident: e_1_2_8_46_1 doi: 10.1002/anie.202108624 – ident: e_1_2_8_79_1 doi: 10.1016/j.elecom.2015.09.011 – ident: e_1_2_8_94_1 – ident: e_1_2_8_137_1 doi: 10.1038/s41560-020-0674-x – ident: e_1_2_8_57_1 doi: 10.1039/b210714g – ident: e_1_2_8_18_2 doi: 10.1002/adfm.202001263 – ident: e_1_2_8_71_2 doi: 10.1149/2.0641906jes – ident: e_1_2_8_88_1 doi: 10.1016/j.jpowsour.2006.10.042 – ident: e_1_2_8_75_1 – ident: e_1_2_8_121_1 doi: 10.1103/PhysRevB.93.045132 – ident: e_1_2_8_61_1 – ident: e_1_2_8_66_2 doi: 10.1016/j.jiec.2016.10.005 – ident: e_1_2_8_64_1 – ident: e_1_2_8_84_1 doi: 10.1016/j.electacta.2015.07.132 – ident: e_1_2_8_45_1 doi: 10.3390/ijms21093113 – ident: e_1_2_8_91_1 doi: 10.1149/2.F04122if – ident: e_1_2_8_124_1 doi: 10.1016/j.pnsc.2013.04.005 – ident: e_1_2_8_102_1 – ident: e_1_2_8_34_1 doi: 10.1021/acsami.5b10024 – ident: e_1_2_8_133_1 doi: 10.1002/chem.200500883 – start-page: 100738 year: 2021 ident: e_1_2_8_12_1 publication-title: Mater. Today – ident: e_1_2_8_116_1 doi: 10.1038/s41598-019-51692-x – ident: e_1_2_8_100_1 – ident: e_1_2_8_42_1 doi: 10.1016/j.jpowsour.2013.09.082 – ident: e_1_2_8_122_1 doi: 10.3390/cryst7070221 – ident: e_1_2_8_17_1 – ident: e_1_2_8_26_2 doi: 10.1016/j.ensm.2020.04.030 – ident: e_1_2_8_92_1 doi: 10.1016/j.nanoen.2018.10.035 – ident: e_1_2_8_74_1 doi: 10.1016/j.nanoen.2018.12.086 – ident: e_1_2_8_96_1 – ident: e_1_2_8_77_2 doi: 10.1016/j.molliq.2021.117606 – ident: e_1_2_8_21_1 – ident: e_1_2_8_31_2 doi: 10.1039/C9TA13068C – ident: e_1_2_8_73_1 doi: 10.1016/j.jcis.2009.10.034 – ident: e_1_2_8_128_2 doi: 10.1039/C8CC02250J – ident: e_1_2_8_114_1 doi: 10.1016/j.electacta.2014.09.137 – ident: e_1_2_8_20_1 doi: 10.1002/adma.201908121 – ident: e_1_2_8_136_2 doi: 10.1039/D0CC05344A – ident: e_1_2_8_65_2 doi: 10.1039/C9SE00744J – ident: e_1_2_8_127_2 doi: 10.1021/acsenergylett.8b00565 – ident: e_1_2_8_15_2 doi: 10.1021/acsami.1c06131 – ident: e_1_2_8_27_1 – ident: e_1_2_8_44_1 doi: 10.1002/adma.201900668 – ident: e_1_2_8_47_1 doi: 10.1149/1945-7111/abe9cb – ident: e_1_2_8_62_2 doi: 10.1021/jp311886h – ident: e_1_2_8_30_2 doi: 10.1002/aenm.201800589 – ident: e_1_2_8_132_1 doi: 10.1002/aenm.202000982 – ident: e_1_2_8_24_1 – ident: e_1_2_8_67_2 doi: 10.1016/j.electacta.2013.03.027 – ident: e_1_2_8_16_2 doi: 10.1021/acsenergylett.0c02371 – ident: e_1_2_8_8_1 – ident: e_1_2_8_118_2 doi: 10.1080/09506608.2019.1653520 |
SSID | ssj0002140733 |
Score | 2.4177876 |
SecondaryResourceType | review_article |
Snippet | Owing to their high energy density and low cost, zinc‐ion batteries (ZIBs) are gaining much in popularity. However, in practice, issues with hydrogen... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | costs deep eutectic solvent ionic liquid non-proton donor electrolyte organic |
Title | Stability Enhancement of Zinc‐Ion Batteries Using Non‐Aqueous Electrolytes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbatt.202100361 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd-GCQIAYX_IBiUPl4TiOkx4DFA3EKgSdmLhETmKrGVtSdc2hO3HkyN_IX8JznDgZKmJwiRx_yfL7yX7P_r1nhJ5NQxppmksy9T1JuBSCTKNIkCBXHpQwGSnjjXw0F4fH_N1JcDIafR-wlupNepBd7vQr-R-pQh7I1XjJ_oNkXaeQAWmQL3xBwvC9loxBU2y4rdvJrFwa8XU3-18KGGVHY3gLArZhNMEqnliOwBw0vq48hq3BEGFn9kWcs-2m5RV2d72urYHJRb1S60yu-ksgWbmuCnuc-rk5kN_WTprVUp5bLMVLSEziy_Oi5wIVddNIFa6fj72D2odqXa7W0pAGLuqvlgx-Ku2b391xBVi6jhxoVzVQsQQRzDoZH6gdee2yHAzQF-xc7G3w2BQmAex8MF1hM_b6ba27yv9tt3McRBuvmSWmfeLa30B7DAwONkZ78euj95_ceR0DSzT0DWHBjbaLAUrZi6uDuKLjDG2eRmlZ3Ea3WmsDxxY6d9BIlXfR3MEGD2CDK40NbH5--wGAwU7ouAEMBsBASQsVPITKPXT8ZrZ4dUjaZzVIBsqlR7TnKZpxqrn0NOdC-uYuOARFOBdRFjFNo1wxHQnuaU2p8iRlCvIlWAJyKrR_H43LqlQPEDYKY8CEn4c55zwLUqlSP_Q512FO00ztI9JNRJK1MefN0ydnye7Z30fPXf2Vjbbyx5qsmde_VEtexouF-3t47e4foZs9eB-j8WZdqyegfW7Spy0wfgFHL380 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+Enhancement+of+Zinc%E2%80%90Ion+Batteries+Using+Non%E2%80%90Aqueous+Electrolytes&rft.jtitle=Batteries+%26+supercaps&rft.au=Kao%E2%80%90ian%2C+Wathanyu&rft.au=Mohamad%2C+Ahmad+Azmin&rft.au=Liu%2C+Wei%E2%80%90Ren&rft.au=Pornprasertsuk%2C+Rojana&rft.date=2022-05-01&rft.issn=2566-6223&rft.eissn=2566-6223&rft.volume=5&rft.issue=5&rft_id=info:doi/10.1002%2Fbatt.202100361&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_batt_202100361 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2566-6223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2566-6223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2566-6223&client=summon |