Micromagnetic Modeling of Nanocontact Spin-Torque Oscillators With Perpendicular Anisotropy at Zero Bias Field
In this paper, we present a numerical study to determine the feasibility of exciting and sustaining stable magnetization oscillations in magnetic nanocontact devices subjected to the combined action of a spin-polarized current and a perpendicular anisotropy field when no external field is applied. A...
Saved in:
Published in | IEEE transactions on magnetics Vol. 44; no. 11; pp. 2512 - 2515 |
---|---|
Main Authors | , , , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
New York, NY
IEEE
01.11.2008
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we present a numerical study to determine the feasibility of exciting and sustaining stable magnetization oscillations in magnetic nanocontact devices subjected to the combined action of a spin-polarized current and a perpendicular anisotropy field when no external field is applied. A systematic numerical analysis of the properties exhibited by such spintronic oscillators is carried out by means of a micromagnetic framework. The study reveals a nonlinear behavior of the excited frequency as the anisotropy field strength is varied. More noteworthy, full-scale investigations result in a hysteretic dependence of the excited frequency on the applied current together with the existence of two kinds of precessional spin-wave modes: an anisotropic radially propagating mode and a gyrotropic motion of a magnetic vortex-core. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9464 1941-0069 |
DOI: | 10.1109/TMAG.2008.2002596 |