Carbon nanotube-reinforced composites as structural materials for microactuators in microelectromechanical systems

Nanocomposites are a promising new class of structural materials for the mechanical components of microelectromechanical systems (MEMS). This paper presents a detailed theoretical investigation of the utility of carbon nanotube-reinforced composites for designing actuators with low stiffness and hig...

Full description

Saved in:
Bibliographic Details
Published inNanotechnology Vol. 17; no. 19; pp. 4895 - 4903
Main Authors Ashrafi, Behnam, Hubert, Pascal, Vengallatore, Srikar
Format Journal Article
LanguageEnglish
Published IOP Publishing 14.10.2006
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nanocomposites are a promising new class of structural materials for the mechanical components of microelectromechanical systems (MEMS). This paper presents a detailed theoretical investigation of the utility of carbon nanotube-reinforced composites for designing actuators with low stiffness and high natural frequencies of vibration. The actuators are modelled as beams of solid rectangular cross-section consisting of an isotropic matrix reinforced with transversely isotropic carbon nanotubes. Three different types of nanotube reinforcements are considered: single-walled carbon nanotubes (SWNTs), multi-walled carbon nanotubes (MWNTs) and arrays of SWNTs. The effects of nanotube aspect ratio, dispersion, alignment and volume fraction on the elastic modulus and longitudinal wave velocity are analysed by recourse to the Eshelby-Mori-Tanaka theory. The calculated bounds on Young's modulus and wave velocity capture the trend of the experimental results reported in the literature. Polymer-matrix nanocomposites reinforced with aligned, dispersed SWNTs are identified as excellent candidates for microactuators and microresonators, with properties rivalling those of monolithic metallic and ceramic structures used in the current generation of MEMS. A qualitative comparison between the state-of-the-art in nanocomposite manufacturing technology and the predicted upper bound on Young's modulus and longitudinal wave velocity highlights the enormous improvements needed in materials processing and micromachining to harness the full potential of carbon nanotube-reinforced composites for microactuator applications. These results have immediate and significant implications for the use of nanotube composites in MEMS.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0957-4484
1361-6528
DOI:10.1088/0957-4484/17/19/019