Dynamic Adaptive Anti-Jamming via Controlled Mobility

In this paper, the mobility of network nodes is explored as a new promising approach for jamming defense. To fulfill it, properly designed node motion that can intelligently adapt to the jammer's action is crucial. In our study, anti-jamming mobility control is investigated in the context of th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 13; no. 8; pp. 4374 - 4388
Main Authors He, Xiaofan, Dai, Huaiyu, Ning, Peng
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.08.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, the mobility of network nodes is explored as a new promising approach for jamming defense. To fulfill it, properly designed node motion that can intelligently adapt to the jammer's action is crucial. In our study, anti-jamming mobility control is investigated in the context of the single and multiple commodity flow problems, in the presence of intelligent mobile jammers which can respond to the evasion of legitimate nodes as well. Based on spectral graph theory, two new spectral quantities, single- and multi-weighted Cheeger constants and corresponding eigenvalue variants, are constructed to direct motions of the defender and the attacker in this dynamic adaptive competition. Both analytical and simulation results are presented to justify the effectiveness of the proposed approach. Furthermore, the proposed scheme can also be applied in cognitive radio networks to reconfigure the secondary users in the presence of mobile primary users.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2014.2320973