Design of a Dual W- and D-Band PLL

This paper describes the design considerations and performance of the highest frequency phase-locked loop (PLL) reported to date. The PLL was fabricated in a 0.13-μm SiGe BiCMOS process and integrates on a single die: a fundamental-frequency 86-92 GHz Colpitts voltage-controlled oscillator (VCO), a...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 46; no. 5; pp. 1011 - 1022
Main Authors Shahramian, S, Hart, A, Tomkins, A, Carusone, Anthony Chan, Garcia, P, Chevalier, P, Voinigescu, S P
Format Journal Article Conference Proceeding
LanguageEnglish
Published New York, NY IEEE 01.05.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper describes the design considerations and performance of the highest frequency phase-locked loop (PLL) reported to date. The PLL was fabricated in a 0.13-μm SiGe BiCMOS process and integrates on a single die: a fundamental-frequency 86-92 GHz Colpitts voltage-controlled oscillator (VCO), a differential push-push 160-GHz Colpitts VCO with two differential outputs at 80 GHz, a programmable divider chain, the charge pump, and all loop filter components. It achieves the lowest W- and D-band phase noise of -93 dBc/Hz at 90 GHz and -87.5 dBc/Hz at 163 GHz, both measured at a 100 kHz offset, and demonstrates an extended locking range of 80-100 GHz at the fundamental frequency, and 160-169 GHz at the second harmonic output of the push-push VCO. The single-ended PLL output power is -3 dBm at 90 GHz and -25 dBm at 164 GHz. The chip consumes 1.25 W from 1.8 V, 2.5 V, and 3.3 V supplies and occupies 1.1 mm × 1.7 mm, including pads.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2011.2117050