A 6.25 Gb/s Voltage-Time Conversion Based Fractionally Spaced Linear Receive Equalizer for Mesochronous High-Speed Links

Fractionally spaced linear receive equalization (FSE) is shown in this work as an effective method to perform joint equalization and phase-synchronization in mesochronous high-speed links. Given an arbitrary receive sampling phase, a modified sign-sign least mean squares (M-SSLMS) adaptive algorithm...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 46; no. 5; pp. 1183 - 1197
Main Authors SANQUAN SONG, STOJANOVIC, Vladimir
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.05.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fractionally spaced linear receive equalization (FSE) is shown in this work as an effective method to perform joint equalization and phase-synchronization in mesochronous high-speed links. Given an arbitrary receive sampling phase, a modified sign-sign least mean squares (M-SSLMS) adaptive algorithm is developed to tune the FSE tap weights to mitigate the inter-symbol interference (ISI), avoiding the divergence issue in the standard sign-sign least mean squares (SSLMS) algorithm. To achieve the desired linearity with good energy efficiency and large input dynamic range, an FSE is implemented using a voltage-time conversion technique by inverter-based threshold detectors with auto-zeroing function. The two-tap quad-rate FSE receiver with one-tap DFE is fabricated in 90 nm bulk CMOS technology, occupying 0.03 mm 2 active area. With a 1.2 V supply, it achieves a 6.25 Gb/s rate, 3.6 mW/Gb/s efficiency and over 4 bits of linearity.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2011.2105670