Monoblock laser for a low-cost, eyesafe, microlaser range finder

A small, lightweight, low-cost prototype laser has been developed for use in a microlaser range finder (muLRF). The laser design is based on a flash-lamp-pumped, Nd:YAG laser with a Cr(4+) passive Q switch. The design incorporates a monolithic potassium titanyl arsenide (KTA) optical parametric osci...

Full description

Saved in:
Bibliographic Details
Published inApplied optics (2004) Vol. 39; no. 15; p. 2428
Main Authors Nettleton, J E, Schilling, B W, Barr, D N, Lei, J S
Format Journal Article
LanguageEnglish
Published United States 20.05.2000
Online AccessGet more information

Cover

Loading…
More Information
Summary:A small, lightweight, low-cost prototype laser has been developed for use in a microlaser range finder (muLRF). The laser design is based on a flash-lamp-pumped, Nd:YAG laser with a Cr(4+) passive Q switch. The design incorporates a monolithic potassium titanyl arsenide (KTA) optical parametric oscillator (OPO) in an intracavity configuration, producing output at 1.54 mum. Precisely cut, properly coated crystals make up the laser resonator, reducing the number of components and enabling laser oscillation with the simplest of alignment fixtures. The 1.54-mum laser cavity consists of only four rectangular-shaped crystals: a Nd:YAG laser rod, a Nd:YAG endcap, a Cr(4+) Q switch, and a KTA OPO. Along with a ceramic laser pallet and a flash lamp, these six components make up a prototype monoblock (essentially a one-piece) laser transmitter. Several of these simple prototypes have been built and tested, giving a nominal output of >3.0 mJ at 1.54 mum with a 27-ns pulse width. The transmitter was incorporated into a breadboard laser range finder, and successful ranging operations were performed to targets at ranges in excess of 3 km.
ISSN:1559-128X
2155-3165
DOI:10.1364/ao.39.002428