Targeting the SIN3A-PF1 interaction inhibits epithelial to mesenchymal transition and maintenance of a stem cell phenotype in triple negative breast cancer

Triple negative breast cancer (TNBC) is characterized by a poorly differentiated phenotype and limited treatment options. Aberrant epigenetics in this subtype represent a potential therapeutic opportunity, but a better understanding of the mechanisms contributing to the TNBC pathogenesis is required...

Full description

Saved in:
Bibliographic Details
Published inOncotarget Vol. 6; no. 33; pp. 34087 - 34105
Main Authors Bansal, Nidhi, Petrie, Kevin, Christova, Rossitza, Chung, Chi-Yeh, Leibovitch, Boris A, Howell, Louise, Gil, Veronica, Sbirkov, Yordan, Lee, EunJee, Wexler, Joanna, Ariztia, Edgardo V, Sharma, Rajal, Zhu, Jun, Bernstein, Emily, Zhou, Ming-Ming, Zelent, Arthur, Farias, Eduardo, Waxman, Samuel
Format Journal Article
LanguageEnglish
Published United States Impact Journals LLC 27.10.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Triple negative breast cancer (TNBC) is characterized by a poorly differentiated phenotype and limited treatment options. Aberrant epigenetics in this subtype represent a potential therapeutic opportunity, but a better understanding of the mechanisms contributing to the TNBC pathogenesis is required. The SIN3 molecular scaffold performs a critical role in multiple cellular processes, including epigenetic regulation, and has been identified as a potential therapeutic target. Using a competitive peptide corresponding to the SIN3 interaction domain of MAD (Tat-SID), we investigated the functional consequences of selectively blocking the paired amphipathic α-helix (PAH2) domain of SIN3. Here, we report the identification of the SID-containing adaptor PF1 as a factor required for maintenance of the TNBC stem cell phenotype and epithelial-to-mesenchymal transition (EMT). Tat-SID peptide blocked the interaction between SIN3A and PF1, leading to epigenetic modulation and transcriptional downregulation of TNBC stem cell and EMT markers. Importantly, Tat-SID treatment also led to a reduction in primary tumor growth and disseminated metastatic disease in vivo. In support of these findings, knockdown of PF1 expression phenocopied treatment with Tat-SID both in vitro and in vivo. These results demonstrate a critical role for a complex containing SIN3A and PF1 in TNBC and provide a rational for its therapeutic targeting.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1949-2553
1949-2553
DOI:10.18632/oncotarget.6048